Open Access Open Access  Restricted Access Subscription or Fee Access
molecular model of Atk inhibitor

3D-QSAR and molecular docking studies of ATP-competitive Akt inhibitors with the scaffold 4-(piperazin-1-yl)pyrimidine

Xie Wencheng, Zhang Linna, Yin Yanzhen, Yang Dezhi, Zhao Guisen


A three-dimensional quantitative structure–activity relationship (3D-QSAR) model of 42 ATP-competitive Akt inhibitors with the scaffold of 4-(piperazin-1-yl)pyrimidine was constructed using the methods of comparative molecular field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA). We finally obtained an optimal CoMFA model with the cross validation value q2= 0.665, the non-cross validation value r2= 0.984 and the predictive r2pred= 0.970. The optimal CoMSIA model built using the combination of electrostatic, hydrophobic and hydrogen bond donor fields yielded the cross validation value q2= 0.718, the non-cross validation value r2= 0.959 and the predictive r2pred= 0.909. Twelve new compounds were designed and their activities were predicted by the constructed CoMFA and CoMSIA models. The result of further docking analysis was in accordance with that of the 3D-QSAR model, validating the predictive reliability of our model. Furthermore, the result of docking also gave insight into the ligand-protein interactions responsible for high inhibitory potency.


CoMFA; CoMSIA; Molecular docking; ATP-competitive Akt inhibitors; 4-(piperazin-1-yl)pyrimidine

Full Text:



P.F. Jones, T. Jakubowicz, F.J. Pitossi, F. Maurer, B.A. Hemmings. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 4171-4175.

A. Bellacosa, J.R. Testa, S.P. Staal, P.N. Tsichlis. A Retroviral Oncogene, akt, Encoding a Serine-Threonine Kinase Containing an SH2-Like Region. Science 1991, 254 (5029), 274-277.

P.J. Coffer, J.R. Woodgett. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur. J. Biochem. 1991, 201, 475-481.

M. Hanada, J.H. Feng, B.A. Hemmings. Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim. Biophys. Acta, Proteins Proteomics 2004, 1697 (2004), 3-16.

H.G. Wendel, Stanchina, J.S. Fridman, A. Malina, S. Ray, S. Kogan, C. Cordon-Cardo, J. Pelletier, S.W. Lowe. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004, 428 (6980), 332-337.

L.R. Pearce, D. Komander, D.R. Alessi. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 2010, 11 (1), 9-22.

I. Vivanco, C.L. Sawyers. The phosphatidylinositol 3-kinase–Akt pathway in human cancer. Nat. Rev. Cancer 2002, 2 (7), 489-501.

P.J. Coffer, J. Jin, J.R. Woodgett. Protein kinase B (c-Akt) : a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem. J. 1998, 335 (1), 1-13.

E. Barile, S.K. De, C.B. Carlson, V. Chen, C. Knutzen, M. Riel-Mehan, L. Yang, R. Dahl, G. Chiang, M. Pellecchia. Design, Synthesis, and Structure-Activity Relationships of 3-Ethynyl-1H-indazoles as Inhibitors of the Phosphatidylinositol 3-Kinase Signaling Pathway. J. Med. Chem. 2010, 53, 8368-8375.

Y.O. Al-Bazz, J.C.E. Underwood, B.L. Brown, P.R.M. Dobson. Prognostic significance of Akt, phospho-Akt and BAD expression in primary breast cancer. Eur. J. Cancer 2009, 45, 694-704.

V. Shtilbans, M.X. Wu, D.E. Burstein. Current overview of the role of Akt in cancer studies via applied immunohistochemistry. Ann. Diagn. Pathol. 2008, 12, 153-160.

K. Lin, J. Lin, W.I. Wu, J. Ballard, B.B. Lee, S.L. Gloor, G.P.A. Vigers, T.H. Morales, L.H. Friedman, N. Skelton. An ATP-Site On-Off Switch That Restricts Phosphatase Accessibility of Akt. Sci. Signaling 2012, 5 (223), 1-10.

C.S. Mitsiades, N. Mitsiades, M. Koutsilieris. The Akt Pathway: Molecular Targets for Anti-Cancer Drug Development. Curr. Cancer Drug Targets 2004, 4, 235-256.

D.A. Altomare, J.R. Testa. Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005, 24, 7455-7464.

A. Bellacosa, C.C. Kumar, A. Di Cristofano, J.R. Testa. In Advances in Cancer Research; G.F. VandeWoude, G. Klein; Elsevier: San Diego, 2005; Vol.94, pp 29–86.

P. Wang, L. Zhang, Q. Hao, G. Zhao. Developments in Selective Small Molecule ATP-Competitive Inhibitors Targeting the Serine/Threonine Kinase Akt/PKB. Mini-Rev. Med. Chem. 2011, 11, 1093-1107.

Q. Hao, Y. Zhong, P. Wang, G.S. Zhao. Research progress of protein kinase B/Akt inhibitors. Chemistry of Life 2011, 31 (4), 557-565.

C.W. Lindsley, Z.J. Zhao, W.H. Leister, R.G. Robinson, S.F. Barnett, D. Defeo-Jones, R.E. Jones, G.D. Hartman, J.R. Huff, H.E. Huber, M.E. Duggan. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 761-764.

G. Saxty, S.J. Woodhead, V. Berdini, T.G. Davies, M.L. Verdonk, P.G. Wyatt, R.G. Boyle, D. Barford, R. Downham, M.D. Garrett, R.A. Carr. Identification of Inhibitors of Protein Kinase B Using Fragment-Based Lead Discovery. J. Med. Chem. 2007, 50, 2293-2296.

K.D. Freeman-Cook, C. Autry, G. Borzillo, D. Gordon, E. Barbacci-Tobin, V. Bernardo, D. Briere, T. Clark, M. Corbett, J. Jakubczak, S. Kakar, E. Knauth, B. Lippa, M.J. Luzzio, M. Mansour, G. Martinelli, M. Marx, K. Nelson, J. Pandit, F. Rajamohan, S. Robinson, C. Subramanyam, L.Q. Wei, M. Wythes, J. Morris. Design of Selective, ATP-Competitive Inhibitors of Akt. J. Med. Chem. 2010, 53, 4615-4622.

S.H. Chang, Z. Zhang, X.X. Zhuang, J.F. Luo, X.W. Cao, H.L. Li, Z.C. Tu, X.Y. Lu, X.M. Ren, K. Ding. New thiazole carboxamides as potent inhibitors of Akt kinases. Bioorg. Med. Chem. Lett. 2012, 22, 1208-1212.

M. Addie, P. Ballard, D. Buttar, C. Crafter, G. Currie, B.R. Davies, J. Debreczeni, H. Dry, P. Dudley, R. Greenwood, P.D. Johnson, J.G. Kettle, C. Lane, G. Lamont, A. Leach, R.W.A. Luke, J. Morris, D. Ogilvie, K. Page, M. Pass, S. Pearson, L. Ruston. Discovery of 4‑Amino‑N‑[(1S)‑1-(4-chlorophenyl)-3-hydroxypropyl]- 1-(7H‑pyrrolo[2,3‑d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an Orally Bioavailable, Potent Inhibitor of Akt Kinases. J. Med. Chem. 2013, 56, 2059-2073.

J.F. Blake, N.C. Kallan, D.M. Xiao, R. Xu, J.R. Bencsik, N.J. Skelton, K.L. Spencer, I.S. Mitchell, R.D. Woessner, S.L. Gloor, T. Risom, S.D. Gross, M. Martinson, T.H. Morales, G.P.A. Vigers, B.J. Brandhuber. Discovery of pyrrolopyrimidine inhibitors of Akt. Bioorg. Med. Chem. Lett. 2010, 20, 5607-5612.

Clinical information can be found at by entering following identifiers: NCT01090960, NCT01353781, NCT00920257, NCT01532700, NCT01283035.

J. Fang, D. Huang, W. Zhao, H. Ge, H.B. Luo, J. Xu. A New Protocol for Predicting Novel GSK-3β ATP Competitive Inhibitors. J. Chem. Inf. Model. 2011, 51, 1431-1438.

V.K. Vyas, N. Gupta, M. Ghate. CoMFA and CoMSIA analysis of protein kinase B (PKBβ) inhibitors using various alignment methods. Med. Chem. Res. 2013, 22, 6046–6062.

V.K. Vyas, M. Ghate, N. Gupta. 3D QSAR and HQSAR analysis of protein kinase B (PKB/Akt) inhibitors using various alignment methods. Arabian J. Chem. 2013.

M. Muddassar, F.A. Pasha, M.M. Neaz, Y. Saleem, S.J. Cho. Elucidation of binding mode and three dimensional quantitative structure–activity relationship studies of a novel series of protein kinase B/Akt inhibitors. J. Mol. Model. 2009, 15, 183-192.

R.D. Cramer, D.E. Patterson, J.D. Bunce. Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc. 1988, 110, 5959-5967.

G. Klebe, U. Abraham, T. Mietzner. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules To Correlate and Predict Their Biological Activity. J. Med. Chem. 1994, 37, 4130-4146.

G. Klebe. Perspectives in Drug Discovery and Design, Kluwer Academic Publishers: Great Britain, 1998.

M. Clark, R.D. Cramer, N. Van Opdenbosch. Validation of the General Purpose Tripos 5.2 Force Field. J. Comput. Chem. 1989, 10, 982-1012.

Cho, S. J.; Tropsha, A. Cross-Validated R2-Guided Region Selection for Comparative Molecular Field Analysis: A Simple Method To Achieve Consistent Results. J. Med. Chem. 1995, 38, 1060.

S.Yu, P. Wang, Y. Li, Y. Liu, G. Zhao. Docking-based CoMFA and CoMSIA study of azaindole carboxylic acid derivatives as promising HIV-1 integrase inhibitors. SAR QSAR Environ. Res. 2013, 24, 819-839.

B.L. Bush, B. Robert, Jr. Nachbar. Sample-distance Partial Least Squares: PLS optimized for many variables, with application to CoMFA. J. Comput.-Aided Mol. Des. 1993, 7, 587-619.

D.T. Manallack, D.D. Ellis, D.J. Livingstone. Analysis of Linear and Nonlinear QSAR Data Using Neural Networks. J. Med. Chem. 1994, 37, 3758-3767.

R.X. Wang, Y.P. Lu, S.M. Wang. Comparative Evaluation of 11 Scoring Functions for Molecular Docking. J. Med. Chem. 2003, 46, 2287-2303.

J.F. Blake, R. Xu, J.R. Bencsik, D. Xiao, N.C. Kallan, S. Schlachter, I.S. Mitchell, K.L. Spencer, A.L. Banka, E.M. Wallace, S.L. Gloor, M. Martinson, R.D. Woessner, G.P.A. Vigers, B.J. Brandhuber, J. Liang, B.S. Safina, J. Li, B. Zhang, C. Chabot, S. Do, L. Lee, J. Oeh, D. Sampath, B.B. Lee, K. Lin, B.M. Liederer, N.J. Skelton. Discovery and Preclinical Pharmacology of a Selective ATP-Competitive Akt Inhibitor (GDC-0068) for the Treatment of Human Tumors. J. Med. Chem. 2012, 55 (18), 8110-8127.

ISSN 2347–9825