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ABSTRACT 

The current research investigates mixed convection across curved stretching surface. This analysis takes into account the effect of velocity slip as 
well as thermal conductivity. The boundary layer problem is expressed as a mathematical system of equations.  Equations in a non-dimensional 
form are derived by applying an appropriate similarity transformation. Matlab is employed to compute the numerical solutions of the highly 
nonlinear system of ordinary differential equations. For various values of relevant parameters, substantial variations in the velocity, temperature, 
and concentration profiles were found. Graphs and tables are used to illustrate the results. It has been shown that due to the rising value of 
curvature parameter the skin friction coefficient drops.   

Keywords: Mixed convection, Velocity Slip, Thermal conductivity, Curved stretching surface  

INTRODUCTION 
The beginning of the background of boundary layer flow has 

been discussed in recent years. researchers and scientists have 
focused on various elements of heat transfer and transformation 
over a stretched surface. The viscous fluid flow toward the 
boundary layer caused by an incessantly moving or stretching sheet 
has several engineering and technological applications. 
Manufacturing of paper, vehicles, medical device manufacture, and 
other industrial activities are examples of such processes. The term 
"mixed convection flow" refers to a flow that combines forced and 
free convection. Mixed convection flow is the combination of 
forced and free convection flows. This kind of flow is found in 
variety of transport processes in both engineering and nature, such 

as flows in the ocean, and atmospheric flows, nuclear reactors, 
electronic devices cooled by fans, etc. Choi et al.1 was the first to 
investigate the heat transfer of nanofluid flow due to convection. 
Pandey et al.2 addressed the MHD convective flow of nanofluid 
across the curved surface with the effect of different physical 
quantities. Combined impact of chemical reactions and buoyancy 
forces was explored by Revathi et al.3.Ahmad et al.4 discussed the 
two-dimensional viscous fluid flow with the combined effect of 
magnetic field and mixed convection due to curved stretching 
surface. The steady fluid flow towards the stagnation point, as well 
as the joule heating impact, was studied by Zhang et al.5. Ahmad et 
al.6 obtained the dual solution of boundary layer flow problem 
numerically for Sisko fluid, the impact of thermal radiation due to 
higher heat generation and chemical reaction on the flow, also 
considered in this study. Acharya et al.7 discussed the advancement 
in increasing value of heat transfer coefficient due to first and 
second-order velocity slip effect, on MHD fluid flow. Naveed et 
al.8 examined the magnetohydrodynamic incompressible fluid flow 
and heat transfer by applying a curvilinear coordinate system. 
Ibrahim et al.9 investigated the higher-order slip flow of nanofluid 
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and the impact of thermo-diffusion was also explored in this work. 
Wahid et al.10 developed a viscous fluid flow model along with the 
radiation effect across the curved surface. Brownian motion and the 
thermophoresis effect were found by Awais et al.11 on heat transfer 
through a vertical stretched sheet. Due to its wide practical use, this 
work drew a lot of interest in the field of heat and mass transfer. 
Khan et al.12 used similarity transformation to find a numerical 
solution of the nanofluid flow issue. The flow of Casson fluid with 
the heat source/sink effect owing to a stretched cylindrical surface 
was investigated by Song et al.13. In order to predict the boundary 
layer flow pattern, many studies included the different variable 
properties of the fluid. The influence of first order velocity slip 
along with consequences of higher value of heat generation and 
absorption constants on the flow of nanofluid across curved surface 
was discussed by Muhammad et al.14. Khan et al.15 find out the 
numerical solution as well as analytical solution of the electrically 
conducting fluid flow problem due to porous effect on the curved 
surface area. Amanulla et al.16 studied the consequences of various 
slip conditions on MHD viscous fluid flow in an isothermal sphere 
domain in the porous medium. The impact of radiation parameter 
on two-dimensional Casson fluid flow was examined by Zhou et 
al.17.  Rosca et al.18 studied the modelling of unsteady flow of 
nanofluid along both cases stretching and shrinking surfaces with 
the effect of chemical reactions. And numerical solutions of the 
problem were obtained with curvilinear coordinates. Afterwards, 
Ahmed et al.19 inspected the flow pattern across exponentially 
stretching curved surface to provide the impacts of different 
physical aspects such as thermal conductivity, permeability on 
Williamson nanofluid flow. Imtiaz et al.20 studied the mutual effect 
of Joule heating and thermal conductivity on Casson fluid flow, the 
rate of heat and mass transfer were also inspected for these 
parameter in this study. Xiong et al.21 discussed the velocity slip 
effect on velocity and temperature distribution.many studies22-23 
have examined the velocity and thermal slip on convective fluid 
flow. Kumar et al.24 used the heat source and sink effect on the flow 
of Carreau nanofluid past an exponentially stretching sheet. Abbas 
et al.25 discussed the viscous boundary layer flow of Casson fluid 
due to magnetic field present towards the vertical direction of the 
fluid flow. various investigations have been done by26-28 in the field 
of curved surface. Khan et al.29 considered the mixed convective 
Jeffery fluid flow model to investigate the influence of sundry flow 
variables on the velocity at curved surface. Imtiaz et al.30 developed 
the viscous fluid model, and also enlightened the impacts of 
homogeneous-heterogeneous reactions on change in temperature 
distribution of the fluid. Abbas et al.31 studied that thermal radiation 
and natural convection both are the major factors, that effects the 
flow of hydromagnetic fluid. Liu et al.32 presented an unsteady flow 
of nanofluid towards the stagnation point.  

MATHEMATICAL FORMULATION 
The current study focused on the flow of mixed convection 

nanofluids towards a curvilinear stretching surface. The velocity 
slip boundary condition with the effect of thermal radiation was 
used to conduct the study. The curvilinear coordinates system 
(sc,rc) was utilized for solving the two-dimensional fluid flow 
problem. sc Coordinate measured along a curved surface whereas 

the coordinate rc is normal to the curved surface. The Radius of 
curvature of the Curved surface assuming Rc.Tw and Cw is the 
surface temperature and concentration of the surface. T∞ is ambient 
temperature i.e. Temperature at far from the surface and C∞ is the 
concentration far from the surface area. 

 
Figure 1 Physical representation of fluid flow 

 
The mixed convective flow problem of a nanofluid along with 

appropriate boundary conditions govern as [33-34] 
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With boundary condition 

𝑢𝑢 = 𝑈𝑈𝑤𝑤 + 𝛿𝛿∗ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟𝑐𝑐

   as  𝑈𝑈𝑤𝑤 = 𝑎𝑎𝑠𝑠𝑐𝑐 ,  where a is a constant 

𝑢𝑢 = 𝑎𝑎𝑠𝑠𝑐𝑐 + 𝛿𝛿∗ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟𝑐𝑐

 , 𝜈𝜈 = 0, 𝑇𝑇 = 𝑇𝑇𝑤𝑤,  𝐶𝐶 = 𝐶𝐶𝑤𝑤   at   𝑟𝑟𝑐𝑐 = 0                   (6) 

𝑢𝑢 → 0, 𝑇𝑇 → 𝑇𝑇∞, C→ 𝐶𝐶∞ ,  𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟𝑐𝑐

→ 0      as 𝑟𝑟𝑐𝑐 → ∞                              (7) 

𝑢𝑢 and 𝑣𝑣 are nanofluid velocity along curvilinear axis s and 𝑟𝑟𝑐𝑐 
direction, (𝜌𝜌𝐶𝐶𝑝𝑝)𝑛𝑛𝑛𝑛  is the specific heat of nanofluid  𝐷𝐷𝑚𝑚 is 
Molecular diffusivity, 𝛿𝛿∗ is slip coefficient, 𝜌𝜌𝑛𝑛𝑛𝑛 is density of 
nanofluid, 𝑘𝑘𝑛𝑛𝑛𝑛  is Thermal conductivity of the fluid,  𝜇𝜇𝑛𝑛𝑛𝑛 is dynamic 
viscosity of the nanofluid, 𝑅𝑅𝑐𝑐  is Radius of curved surface. 

NUMERICAL SOLUTION 
Following similarity transformation implemented for obtaining 

non-dimensional equations of the equations. Singh et al.35 
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𝐶𝐶 = 𝐶𝐶∞ + (𝐶𝐶𝑤𝑤 − 𝐶𝐶∞)𝜙𝜙(ξ) 
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Eq. 1 is satisfied by the above similarity transformation and the 
reduced equations are: Bhattacharya et al.36 
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To eliminate the pressure term from equation number (8) & (9) we 
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 is Curvature parameter, 𝐾𝐾2 =
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  buoyancy ratio parameter, 𝑆𝑆𝑆𝑆 = 𝜈𝜈𝑓𝑓
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 is schmidt number, 
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𝑘𝑘𝑛𝑛𝑛𝑛
 is prandtl number.  

The physical quantities of interest at a curved surface, coefficient 
of skin friction 𝐶𝐶𝑓𝑓, local Nusselt number 𝑁𝑁𝑢𝑢, and Sherwood number 
𝑆𝑆ℎ are determined as follows: 

𝐶𝐶𝑓𝑓 = 𝜏𝜏𝑤𝑤
𝜌𝜌𝑓𝑓𝑢𝑢𝑤𝑤2

 , 𝑁𝑁𝑢𝑢 = 𝑠𝑠𝑞𝑞𝑤𝑤
𝑘𝑘𝑛𝑛𝑛𝑛(𝑇𝑇𝑤𝑤−𝑇𝑇∞) ,     𝑆𝑆ℎ = 𝑠𝑠𝑗𝑗𝑤𝑤

𝐷𝐷𝑚𝑚(𝐶𝐶𝑤𝑤−𝐶𝐶∞)     Where  
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   is shear stress at wall, 𝑞𝑞𝑤𝑤 =
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 is surface heat flux, 

  𝑗𝑗𝑤𝑤 = −𝐷𝐷𝑚𝑚 �
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�
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 Surface mass flux in the direction of 𝑠𝑠𝑐𝑐 axis.  

RESULTS AND DISCUSSION 
To solve the nonlinear differential equations (10) (11) and (14) 

with the associated boundary conditions (12) and (13), MATLAB 
software is used. Velocity distribution, temperature distribution 
along with concentration profile demonstrated for related constant 
parameters. The certain flow parameters retained fixed for the 
whole study𝐾𝐾 = 10,   𝑃𝑃𝑃𝑃 = 1, 𝑆𝑆𝑆𝑆 = 1.0, 𝜆𝜆 = 0.3, 𝛿𝛿 = 0.5, 𝐾𝐾2 =
0.3. 

Figure 2 demonstrates the change in velocity, owing to slip 
parameter δ. The velocity field and dynamic viscosity has converse 
relationship, and has a comparable impact. Because the slip 
parameter raises the value of dynamic viscosity, consequently the 

fluid motion decreases significantly, and this phenomenon causes 
the drop in the velocity profile. Figure 3 is plotted to highlight the 
variations in velocity distribution due to changing value of 
curvature parameter K. The bent of the curved extending surface 
aids fluid flow across it. The outcome of shown figure is that the 
velocity improves as the curvature parameter K rises gradually. 

 

Figure 2 velocity profile versus  δ 

 
Figure 3 velocity profile versus  𝐾𝐾 

 
Figure 4 elucidates the influence for different values of slip 

parameter δ on temperature distribution. It can be easily observed 
through the figure that due to slight increment in the velocity slip 
𝛿𝛿, the friction at the boundary layer increases, allowing more heat 
to be transmitted to the fluid, causing the temperature to rise 
significantly. Figure 5 illustrates the behavior of the temperature 
distribution in the fluid as the curvature parameter K changes. The 
rising value of the parameter K causes the reduction in temperature. 
Figure 6 demonstrates the variation in velocity distribution for the 
different values of λ. Due to rising value of mixed convection 
parameter 𝜆𝜆, the significant progress observed in Velocity profile. 
A higher value of 𝜆𝜆 causes the buoyancy forces to rise, resulting 
velocity distribution grows due to this phenomenon. Figure 7  
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Figure 4 temperature profile versus  𝛿𝛿 

Figure 5 temperature profile versus  𝐾𝐾 
 

Figure 6 Velocity profile versus  λ 

exhibits the variation in skin friction coefficient for changing value 
of curvature parameter K. It has been noticed that with the larger 
value of the curvature parameter K, The skin friction coefficient 
appears to decrease. 
 

 
Figure 7 Skin friction coefficient versus K 

 
The variations in the concentration profile for the mixed 

convection parameter are depicted in Figure 8. The graph shows a 
drop in concentration profile due to the effect of buoyancy force 
which enhances the pressure gradient, due to this reason 
concentration profile is decreases. Irfan et al.37 

 

 
Figure 8 Concentration profile versus λ 
 

Figure 9 demonstrates the features of concentration of fluid 
versus Schmidt number. As 𝑆𝑆𝑆𝑆 increases, the momentum 
dissipation rate improves, the concentration of the fluid drops. For 
varying values of 𝐾𝐾, 𝑃𝑃𝑃𝑃, and 𝑆𝑆𝑆𝑆. Table 1 shows the Local Nusselt 
number and Sherwood number. For varying 𝑃𝑃𝑃𝑃 and 𝑆𝑆𝑆𝑆, the Local 
Nusselt number grows as the curvature parameter grows. The 
findings support earlier research and show that the findings are in 
good accord. In the below table we can see that the nusselt number 
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for 𝑃𝑃𝑃𝑃 = 1.4 and 𝑃𝑃𝑃𝑃 = 1.8 are identical to the result of Ahmed et 
al. 19 upto five decimal places. 
 

 
Figure 9 Concentration profile versus Sc 

 
Table 1: Comparison of Local Nusselt number and Sherwood 
number for the K, Pr, Sc 
𝑲𝑲 𝑷𝑷𝑷𝑷 𝑺𝑺𝑺𝑺 −𝜽𝜽′(𝟎𝟎) [19]et al. −𝝓𝝓′(𝟎𝟎) [19]et al. 
1 1.0 0.6 1.081935728  1.087855437 1.08785273 
3 1.3 0.8 1.082142173  1.085473158  
5 1.4 1.0 1.082527168 1.08252 1.140732428 1.14073275 
6 1.5 1.2 1.084471589 1.084473678 1.175715642  

CONCLUSION 
The mixed convective nanofluid flow was studied in the current 

work. This study not only highlighted the thermal radiation and 
velocity slip condition impacts on the heat transfer but also 
investigated the different aspects of concentration of the fluid for 
the related parameters. The numerical outcomes were explored for 
the various pertinent parameters. The physical elucidation of skin 
friction coefficient, local Nusselt number, and Sherwood number 
for the concerned variables are displayed in the form of graphical 
as well as tabular form. 

The following are the key findings: 
• Velocity distribution decays for the rising value of slip 

parameter δ but converse behavior observed for curvature 
parameter K. 

• Temperature profile rises for larger value of slip 
parameter δ but temperature decreases for the higher 
value of curvature parameter K. 

• Velocity profile increases for the enhancing value of λ. 
• Reduction in Skin friction coefficient seen with the larger 

value of curvature parameter. 
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