Open Access Open Access  Restricted Access Subscription or Fee Access
chemical sensor

Electrochemical detection of toxic chemicals for the development of new generation sensors

Virendra Vikram Singh, Mannan Boopathi, Rajeev Jain

Abstract


Rapid and sensitive detection of chemical warfare agent (CWA) is of great interest especially after the society again witnessed the dehumanizing and horrifying effect of the CWA. Among a variety of conventional detection methodologies (IMS, SAW, FT-IR, GC-MS etc),   that have been developed for CWA, electrochemical sensors offer the unrivaled merits of high sensitivity, miniaturization, specificity, low power consumption and operational simplicity. The objective of this investigation was towards the development of new generation sensors through newer approaches for the detection of toxicants-blister agents by modifying the electrode surface or using a greener and eco-friendly sensing medium like room temperature ionic liquid in order to achieve electrochemical activity towards blister agents as the blister agents are not electroactive. To meet this requirement, a study was undertaken to develop an electrochemical detection technique for CWA based on in-situ electrogenerated metal electrocatalyst, use of conducting polymer and utilization of RTILs as alternative greener medium for the sensing of CWA without modifying electrode surface due to the extended potential window and other unique properties of RTILs. With continued innovations in nanotechnology, functional materials and attention to limitation of this technology, in coming years it is expected that electrochemical sensors will play a crucial role in the CWA detection scenario.


Keywords


Conducting polymer; Electrocatalyst; room temperature ionic liquid; sensor; Chemical warfare agents;

Full Text:

PDF

References


Y. C. Yang , J. A. Baker , J. A. Ward , Decontamination of chemical warfare agents, Chem. Rev. 1992 , 92(8) , 1729-1743.

J.A. F. Compton , Military chemical and biological agents, in: Chemical and Toxicological Properties , The Telford Press , Caldwell, NJ 1987 .

Y. C. Yang, Chemical Detoxification of Nerve Agent VXAcc. Chem. Res., 1999, 32(2), 109–115.

W. Krutzsch, R. Trapp, A commentary on the chemical weapons convention, Martinus Nijhoff Publishers, London, 1994.

D. C. Tiwari, R. Sharma, K. D. Vyas, M. Boopathi, V. V. Singh, P Pandey,

Electrochemical incorporation of copper phthalocyanine in conducting polypyrrole for the sensing of DMMP, Sens. Actuators B: Chem., 2010, 151 (1) , 256-264

P. K. Sharma, G. Gupta, V. V. Singh, B. K. Tripathi, P. Pandey, M. Boopathi, B. Singh, R Vijayaraghavan, Synthesis and characterization of polypyrrole by cyclic voltammetry at different scan rate and its use in electrochemical reduction of the simulant of nerve agents, Synth. Met., 2010, 160 (23), 2631.

S. Chapalamadugu, G. S. Chaudry, Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates, Crit. Rev. Biotechnol. 1992, 12, 357.

M. Mesilaakso, E. Tolppa, Detection of Trace Amounts of Chemical Warfare Agents and Related Compounds in Rubber, Paint, and Soil Samples by 1H and 31P{1H} NMR Spectroscopy, Anal. Chem. 1996, 68(14), 2313

H. H. Hill, S. J. Martin, Conventional analytical methods for chemical warfare agents, Pure Appl. Chem. 2002, 74(12), 2281-2291.

Y. Seto, M. K. Kataoka, K. Tsuge, I. Ohsawa, K. Matsushita, H. Sekiguchi, T. Itoi, K. Lura, Y. Sano, S. Yamashiro, Sensing technology for chemical-warfare agents and its evaluation using authentic agents, Sens. Actuators B: Chem. 2005, 108, 193-197.

Y. Xie, B. N. Popov, R. E. White, A novel electrochemical method for the detection of nerve gases, J. Electroanal. Chem. 1999, 466, 169-176.

O. Sadik, W. Land, J. Wang, Targeting Chemical and Biological Warfare Agents at the Molecular Level, Electroanalysis 2003, 15, 1149-1159.

M. S. Nieuwenhuizen, J. L. N. Harteveld, A surface acoustic wave gas sensor for organophosphorus compounds, Sens. Actuators B: Chem. 1994, 19, 502-505.

J. P. Le Harle, B. Bellier, Optimisation of the selectivity of a pulsed flame photometric detector for unknown compound screening, J. Chromatogr. A 2005, 1087, 124-130.

K. Nishiyama, H. Yamada, S. Kishi, K. Sato, H. Matsuura, N. Nakano, Y. Seto, I. Taniguchi, Chem. Sens. 2009, 25, 79.

I. Oh, R. I. Masel, Electrochemical Organophosphate Sensor Based on Oxime Chemistry, Solid-State Lett. 2007, 10, J19-J22.

V. M. McHugh, C. S. Harden, D. B. Shoff, B. S. Ince, S. E. Harper, G. E. Blethen, R. J. Schafer, P. Arnold, S. Pavitt, M. Thomas, T. Conner, E. Terzic, W. Espander, Using an array of ion mobility spectrometers for ground truth measurements in field tests involving releases of chemical warfare agent surrogates, Int. J. Ion Mobility Spectrom. 2003, 6, 49-52.

W. E. Steiner, S. J. Klopsch, W. A. English, B. H. Clowers, H. H. Hill, Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry, Anal. Chem. 2005, 77, 4792-4799.

A. Eisenkraft, G. Markel, S. Simovich, I. Layish, A. Hoffman, A. Finkelstein, E. Rotman, T. Dushnitsky, A. Krivoy, Mobile chemical detector (AP2C+SP4E) as an aid for medical decision making in the battlefield, Mil. Med. 2007, 172, 997-1001.

G. A. Eiceman, J. G. Torresday, E. Overton, A. Bhushan, H. P. Dharmasena, Gas chromatography, Anal. Chem. 2006, 78, 3985-3996.

W. A. Bryden, R. C. Benson, H. W. Ko, M. Donlon, Universal Agent Sensor for Counter proliferation Applications, Apl. Techn. Dig. 1997, 18, 302-308.

J. A. Ashley, C. H. Lin, P. Wirsching, K. D. Janda, Monitoring Chemical Warfare Agents: A New Method for the Detection of Methylphosphonic Acid, Angew. Chem. 1999, 38, 1793-1795.

G. L. Gresham, G. S. Groenewold, A. D. Appelhans, J. E. Olson, M. T. Benson, T. Jeffery, B. Rowland, M. A. Weibel, atic secondary ionization mass spectrometry and mass spectrometry/mass spectrometry (MS) characterization of the chemical warfare agent HD on soil particle surfaces, Int. J. Mass Spectrom. 2001, 208 ‚ 135-145.

C. E. Kientz, Chromatography and mass spectrometry of chemical warfare agents, toxins and related compounds: state of the art and future prospectsJ. Chromatogr. A 1998, 814, 1-23.

E. J. Staples, S. Viswanathan, Ultrahigh-speed chromatography and virtual chemical sensors for detecting explosives and chemical warfare agents, IEEE Sensors J. 2005, 5,622-631.

D. C. Collins, M. L. Lee, Developments in ion mobility spectrometry-mass spectrometry, Anal. Bioanal. Chem. 2002, 372, 66-73.

A. Tomchenko, G. P. Harmer, B. T. Marquis, Detection of chemical warfare agents using nanostructured metal oxide sensors, Sens. Actuator B: Chem. 2005, 108, 41-55.

D. S. Lee, H. Y. Jung, J. W. Lim, M. Lee, S. W. Ban, J. S. Huh, D. D. Lee, Explosive gas recognition system using thick film sensor array and neural network, Sens. Actuator B: Chem. 2000, 71, 90-98.

J. Janata, Centennial retrospective on chemical sensors, Anal. Chem. 2001, 73, 150A-153A.

M. A. K. Khan, K. Kerman, M. Petryk, H. B. Kraatz, Noncovalent Modification of Carbon Nanotubes with Ferrocene−Amino Acid Conjugates for Electrochemical Sensing of Chemical Warfare Agent Mimics, Anal. Chem. 2008, 80, 2574-2582.

P. Connolly, Clinical diagnostics opportunities for biosensors and bioelectronics, Biosens. Bioelectron. 1995, 10, 1-6.

P. F. Turner, I. Karube, G. Wilson, Biosensor Fundamentals and Applications, Oxford University press, Oxford, 1987.

V. V Singh, A. K. Nigam, M. Boopathi, P. Pandey, K. Ganesan, R. Jain, B. Singh, R Vijayaraghavan, In situ electrocatalytic reduction of chemical warfare agent sulfur mustard by palladium modified electrode and its sensing application, Sens. Actuator B: Chem. 2011, 160, 840-849.

V. V Singh, G. Gupta, R. Sharma, M Boopathi, P Pandey, K Ganesan, B. Singh, D. C. Tiwari, R. Jain, R Vijayaraghavan, Detection of chemical warfare agent Nitrogen Mustard-1 based on conducting polymer phthalocyanine nanorod modified electrode, Synth. Met. 2011, 159, 1960-1967

V. V Singh, M Boopathi, K Ganesan, B. Singh, R Vijayaraghavan, Electroanalysis, 2010, 221357-1363.




ISSN 2347 – 8853

Indexed in:

Â