Unprecedented Palladium catalyzed Homo-Coupling Reaction of terminal E-diiodoalkanes towards the synthesis of Buta-1,3-diynes

Sudhir K. Sharma*

Department of Chemistry, Government Degree College, Kant, Shahjahanpur, U.P.-242223, India

Received on: 12-Mar-2017 Accepted and Published on: 17-Apr-2017

ABSTRACT

An efficient method for the synthesis of Buta-1,3-diynes have been developed via homocoupling reaction of terminal (E)-1,2-diiodoalkene under Suzuki reaction condition. The method has been successfully applied both on aliphatic and aromatic E-diiodoalkene resulting buta-1,3-diynes prepared in good yields.

Keywords: Cycloaddition, Cross-coupling, Cyclocondensation, Alkynes, Homocoupling

INTRODUCTION

Buta-1,3-diynes have been found to be versatile building blocks for the construction of natural product analogues\(^1\) corbocycles and heterocycles using cycloaddition and cyclocondensation reactions.\(^2\) Recently these moieties have been utilized for the construction of corbocycles benzene\(^3\) and naphthalene,\(^4\) oxygen based heterocycles furan\(^5\) and pyrrole,\(^6\) nitrogen containing 5/6-membered heterocycles pyrrole,\(^7\) pyrazole,\(^7\) triazole,\(^8\) naphthatriaazoles,\(^9\) benzo[a]phenanthridine,\(^10\) benzoquinolines,\(^11\) sulphur and selenium containing heterocycles thiophenes\(^12\) and selenothiophenes.\(^13\) In the literature various methods for the synthesis of buta-1,3-diynes have been reported,\(^14\) out of them copper (II) catalyzed homocoupling of terminal alkynes reported by Eglinton\(^15\) being a simplest method for the synthesis of these scaffolds. In the literature\(^16\), selective synthesis of unsymmetrical buta-1,3-diynes via Pd-catalyzed cross-coupling reactions of E-1,2-diiodoalkenes with terminal alkynes is reported, so we armed the synthesis of triphenylalkenes using E-1,2-diiodoalkenes and phenylboronic acid via Suzuki cross coupling reaction.\(^17\) Triphenylalkenes are the core structure of anticancer agent tamoxifen used for the treatment of breast cancer.\(^18\) For this purpose (E)-1,2-diiodoalkene 1a was subjected with phenylboronic acid using bistriphenylphosphinepalladium (II) chloride (10 mol%), tetrabutylammoniumhydrogensulphate (1.0 mol), and sodiumcarbonate (5.0 mol) in 5.0 mL of water : acetonitrile (5:1) at 100 °C for overnight. After completion of the reaction as monitored by TLC, out of two intense spots the minor product was isolated in trace amount and characterized as biphenyl\(^19\) while the major product was characterized as 1,4-bis(4-tert-butylphenyl)butha-1,3-diyne 2a. Thus, in Suzuki reaction condition, homo coupled products of both the starting materials were obtained unprecedentedly instead of cross-coupled product.

Corresponding Author Dr. Sudhir K. Sharma
Tel: +919889620745
Email: sudhirgcd19@gmail.com

Work dedicated to Dr. Bijoy Kundu (Ph.D. Guide) and Prof. Premraj (Mentor)

©IS Publications http://pubs.iscience.in/ocl
Expected product 1,4-bis(4-tert-butylphenyl)buta-1,3-diyne alone under the above reaction condition, again homo coupled for 24h.

The optimal condition that led to the synthesis of 2a in 73% isolated yield (Table 1, entry 7) involved treatment of 1a with 10 mol % Pd(PPh₃)₂Cl₂, Na₂CO₃, (n-Bu)₄NHSO₄ in H₂O:CH₃CN(5:1) at 100 °C for 24h. Attempts to further improve the yield by either increasing the concentration of palladium salts or by extending reaction timings were not fruitful.

The generality of the method, 1,3-diynes 2 were synthesized by treating terminal diiodoalkene 1a-d with bistriphenylphosphinepalladium (II) chloride (10 mol %), tetrabutylammoniumhydrogensulphate (1.0 mol), and sodiumcorbonate (5.0 mol) in 5.0 mL of water: acetonitrile (5:1) at 100 °C for 24 h (Scheme 2).

The crude products obtained after work up were purified on a silica gel column using ethyl acetate/hexane to afford 2a-d in 46-81% isolated yields (table 2). To the best of our knowledge literature does not relive any report for the conversion of diiodoalkene to buta-1,3-diyne.

RESULT AND DISCUSSION

To establish this reaction method of bisalkynation of E-dioiodoalkenes, we treated terminal (E)-1,2-diodoalkene 1a alone under the above reaction condition, again homo coupled product 1,4-bis(4-tert-butylphenyl)buta-1,3-diyne 2a was formed.

Scheme 1: Reagents and optimal conditions (a) 10 mol % Pd(PPh₃)₂Cl₂, Na₂CO₃, (n-Bu)₄NHSO₄ in H₂O:CH₃CN(5:1) at 100 °C for 24h.

To optimize the reaction condition for improving the yield of buta-1,3-diyne 2a, we carried out this reaction by employing a change in Palladium salts, additives and solvents.

Table 1. Optimization of reaction conditions for the conversion of 1a to 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reaction Conditions</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>% Yield (2a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 mol % Pd(PPh₃)₂Cl₂/(n-Bu)₄NHSO₄ /Na₂CO₃</td>
<td>H₂O:CH₃CN (5:1)</td>
<td>24</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>10 mol % Pd(PPh₃)₂Cl₂/(n-Bu)₄NHSO₄ /K₂CO₃</td>
<td>H₂O:CH₃CN (5:1)</td>
<td>24</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>10 mol % Pd(PPh₃)₂Cl₂/(n-Bu)₄NHSO₄ / Pyridine</td>
<td>H₂O:CH₃CN (5:1)</td>
<td>24</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>10 mol % Pd[(C₆H₅)₂]₃/(n-Bu)₄NHSO₄ /Na₂CO₃</td>
<td>H₂O:CH₃CN (5:1)</td>
<td>45</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>10 mol % Pd(PPh₃)₂Cl₂/(n-Bu)₄NHSO₄ /Na₂CO₃</td>
<td>H₂O:THF (5:1)</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>10 mol % Pd(PPh₃)₂Cl₂/(n-Bu)₄NHSO₄ /Na₂CO₃</td>
<td>H₂O:CH₃CN (5:1)</td>
<td>24</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>10 mol % Pd(PPh₃)₂Cl₂/(n-Bu)₄NHSO₄ /Na₂CO₃</td>
<td>H₂O:CH₃CN (7:1)</td>
<td>24</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>10 mol % Pd(PPh₃)₂Cl₂/(n-Bu)₄NHSO₄ /Na₂CO₃</td>
<td>CH₃CN</td>
<td>48</td>
<td>42</td>
</tr>
</tbody>
</table>

The optimal condition that led to the synthesis of 2a in 73% isolated yield (Table 1, entry 7) involved treatment of 1a with 10 mol % Pd(PPh₃)₂Cl₂, Na₂CO₃, (n-Bu)₄NHSO₄ in H₂O:CH₃CN(5:1) at 100 °C for 24h. Attempts to further improve the yield by either increasing the concentration of palladium salts or by extending reaction timings were not fruitful.

The generality of the method, 1,3-diynes 2 were synthesized by treating terminal diiodoalkene 1a-d with bistriphenylphosphinepalladium (II) chloride (10 mol %), tetrabutylammoniumhydrogensulphate (1.0 mol), and sodiumcorbonate (5.0 mol) in 5.0 mL of water: acetonitrile (5:1) at 100 °C for 24 h (Scheme 2).

Scheme 2: Synthesis of Buta-1,3-diynes

Table 2. Synthesis of Buta-1,3-diynes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate (1)</th>
<th>Product (2)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>3a</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>2b</td>
<td>3b</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>2c</td>
<td>3c</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>2d</td>
<td>3d</td>
<td>46</td>
</tr>
</tbody>
</table>
General procedure for the synthesis of Buta-1,3-diynes(2a-d):
A mixture of E-diiodoalkenes 1a-d (0.2 g, 1.0 eq) in H2O:CH3CN (9:1), Pd(PPh3)2Cl2 (0.2 eq), Na2CO3 (5.0 eq) and (n-Bu)4NHSO4 (1.0 eq) was placed round bottom flask containing a stirring bar. The reaction mixture was heated and stirred at 100 °C for 24h. The reaction mixture was cooled to ambient temperature and extracted with ethylacetate. The solvent was removed in vacuo. The crude product was purified on a silica gel column using ethyl acetate/hexane (v/v 1:9) as eluent to afford 2a-d.

1,4-bis(4-tert-butylphenyl)buta-1,3-diyne (2a):
Yield = 0.104 g (73%), white solid, mp 195-197 °C, [Li16 mp 195-196 °C] Rf = 0.70 (Hexane) IR (KBr) νmax 3458, 2959, 1716, 1653, 1464, 1397, 1262, 1101, 832, cm−1; 1H NMR (300 MHz, CDCl3) δ = 7.45 (4H, d, J = 8.3 Hz, ArH), 1.31 (18H, s, CH3), 13C NMR (75 MHz, CDCl3) δ = 152.7, 132.4, 125.6, 119.0, 81.6, 73.7, 35.0, 31.2 ppm. mass (ES+) m/z 315.2 (M+ + 1). Anal. Calcd for C24H26: C, 91.67; H, 8.33 Found: C, 91.65; H, 8.34.

CONCLUSION
In conclusion we have developed an efficient approach for the conversion of E-diiodoalkenes into very useful scaffolds buta-1,3-diynes under suzuki reaction conditions.

ACKNOWLEDGMENTS
Author acknowledge Dr. R. P. Singh, Director Uttar pradesh Higher Education, Allahabad and Dr. Sheel Priya Tripathi, Principal Govt. Degree College, Kant Shahjahnpur for their constant moral supports.

REFERENCES AND NOTES