Cover Image

Ag-SnO2/Polyaniline composite nanofibers for low operating temperature hydrogen gas sensor

Subhash B Kondawar, Anand M More, Hemlata J Sharma, Sunil P Dongre


Silver doped tin oxide (Ag-SnO2) nanofibers were fabricated by electrospinning and subsequently calcinations technique. Ag-SnO2/polyaniline (PANI) composite nanofibers were prepared by facile in-situ polymerization dip-coating technique. As-synthesized composites nanofibers were characterized by XRD, SEM and studied for hydrogen gas sensing. Ag-SnO2/PANI composite was found to be more sensitive for hydrogen gas at low operating temperature around 420C compared to that of pure or doped SnO2 nanofibers required more than 250oC. Further, the response and recovery time of SnO2/PANI (SP), 1%Ag-SnO2/PANI (ASP1) and 2%Ag-SnO2/PANI (ASP2) composites were obtained at different concentrations 500-1500 ppm of hydrogen gas at an operating temperature of 420C. The good stability and lowest response as well as recovery time were observed for ASP2 composite for all concentrations of hydrogen gas compared to that of pristine SnO2 and other composites.


Ag doped SnO2; Polyaniline; Nanofibers; Electrospinning; Composites; Hydrogen gas sensor

Full Text:



S. Feng, S. Liu, F. Meng, J. Liu, Z. Jin, L. Kong, H. Liu, Review Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review, Sensors. 2012, 12, 2610-2631.

A. Kotach, J. Byun, S. Choi, S. Kim, One pot synthesis of Au doped SnO2 and their gas sensing properties, Sens. Actuator B Chem. 2014, 202, 38-45.

H. Zang, Z. Li, L. Liu, X. Xu, Z. Wang, W. Wang, Enhancement of hydrogen monitoring properties based on Pd-SnO2 composite nanofibers, Sens. Actuator B Chem. 2010, 147, 111-115.

L. V. Thong, L. T. Loan, N. V. Hieu, Comparative study of gas sensor performance of SnO2nanowires and their hierarchical nanostructure, Sens. Actuator B Chem. 2010, 150,112-19.

H. Sharma, N. Sonwane, S. Kondawar, Electrospun SnO2/polyaniline composite nanofibers based low temperature hydrogen gas sensor, Fibers and Polymers, 2015, 16(7), 1527-1532.

X.L. Hu, J.C. Yu, J.M. Gong, Q. Li, G.S. Li, α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties, Adv. Mater. 2007, 19, 2324-2329.

A. Katoch, Z.U. Abideen, J.H. Kim, S.S. Kim, Influence of hollowness variation on the gas-sensing properties of ZnO hollow nanofibers, Sens. Actuators B Chem. 2016, 232, 698-704.

N.H. Kim, S.J. Choi, S.J. Kim, H.J. Cho, J.S. Jang, W.T. Koo, M. Kim, I.D. Kim, Highly sensitive and selective acetone sensing performance of WO3 nanofibers functionalized by Rh2O3 nanoparticles, Sens. Actuators B Chem. 2016, 224, 185-192.

A. Teleki, S.E. Pratsinis, K. Kalyanasundaram, P.I. Gouma, Sensing of organic vapors by flame-made TiO2 nanoparticles, Sens. Actuators B Chem. 2006, 119, 683-690.

S.K. Kim, S.H. Hwang, D. Chang, S. Kim, Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor, Sens. Actuators B Chem. 2010, 149, 28-33.

L. Xu, B. Dong, Y. Wang, X. Bai, Q. Liu, H.W. Song, Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires, Sens. Actuators B Chem. 2010, 147, 531-538.

R. S. Zeferino, U. Pal, R. Meléndrez, M. Barboza, PL and TL behaviors of Ag-doped SnO2 nanoparticles: effects of thermal annealing and Ag concentration, Adv. Nano Res. 2013, 1(4), 193-202.

Y. Lin, W. Wei, Y.J. Li, F. Li, J.R. Zhou, D.M. Sun, Y. Chen, S.P. Ruan, Preparation of Pd nanoparticle-decorated hollow SnO2 nanofibers and their enhanced formaldehyde sensing properties, J. Alloy. Compd. 2015, 651, 690-698.

K. Hasssan, S.M. Iftekhar, G.S. Chung, Fast response hydrogen gas sensors based on discrete Pd/Pd bimettalic ultra-thin films, Sens. Actuator B-Chem. 2016, 234, 434-445.

M.S. Barbosa, M.R. Suman, H.L. Tuller, J.A. Varela, Gas sensor properties of Ag and Pd decorated SnO2 micro disks to NO2, H2,CO; catalyst enhance sensor response and selectivity, Sens. Actuators B Chem. 2017, 239, 253-261.

H. Chi-Hwan, H. Sang-Do, I. Singh, Micro-bead of nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor, Sens. Actuators B Chem. 2005, 109, 264-269.

S. Phanichphant, C. Liewhiran, K. Wetchakun, A. Wisitsoraat, A. Tuantranont, Flame-Made Nb-Doped TiO2 Ethanol and Acetone Sensors, Sensors, 2011, 11(1), 472-484.

B. J. Kim, S. G. Oh, M. G. Han, S. S. Im, Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions, Synth. Met. 2001, 122, 297-304.

A. MacDiarmid, A. Epstein, The concept of secondary doping as applied to polyaniline, Synth. Met., 1994, 65, 103-116.

S. B. Kondawar, S.P. Agrawal, S.H. Nimkar, H.J. Sharma, P.T. Patil, Conductive polyaniline- tin oxide nanocomposites for ammonia sensor, Adv. Mater. Lett , 2012, 3(5), 393-398.

S. B. Kondawar, P.T. Patil, S. P. Agrawal, Chemical vapor sensing properties of electrospun nanofibers of polyaniline/ZnO nanocomposites, Adv. Mater. Lett, 2014, 5(7), 389-395.

J. Chen, J. Yang, X. Yan, Q. Xue, NH3 and HCl sensing characteristics of polyaniline nanofibers deposited on commercial ceramic substrates using interfacial polymerization, Synth. Met. 2010, 160(23), 2452-2458.

H.J. Sharma, D. Jamkar, S.B. Kondawar, Electrospun nanofibers of conducting polyaniline/Al-SnO2 composites for hydrogen sensing applications, Proc. Mater. Sci. 2015, 10, 186–194.

H.J. Sharma, M.A. Salorkar, S.B. Kondawar, H2 and CO gas sensor from SnO2/polyaniline composite nanofibers fabricated by electrospinning, Adv. Mater. Proc., 2017, 2(1), 61-66.

X. Xu, J. Sun, H. Zhang, Z. Wang, B. Dong, T. Jiang, W. Wang, Z. Li and C. Wang, Effects of Al doping on SnO2 nanofibers in hydrogen sensor, Sens. Actuators. B Chem. 2011, 160(1), 858-863.

W.F. Qin, L. Xu, J. Song, R.Q. Xing, H.W. Song, Highly enhanced gas sensing properties of porous SnO2-CeO2 composite nanofibers prepared by electrospinning, Sens. Actuators B Chem. 2013, 185 231- 237.


  • There are currently no refbacks.

ISSN 2394-0867

Indexed in: