Cover Image

The Impact of Central Metal Ions in Porphyrin Functionalized ZnO/TiO2 for Enhanced Solar Energy Conversion

Samim Sardar, Prasenjit Kar, Samir Kumar Pal


The photochemistry of porphyrins and metalloporphyrins has drawn immense research interest because of their diverse catalytic activity and biological relevance. Porphyrin sensitized devices for efficient visible light photocatalysis (VLP) and dye sensitized solar cells (DSSC) are emerging as green alternate to ruthenium dye based devices. In this review, we provide an overview of the ultrafast dynamics and role of metal ions in electron transfer processes in porphyrin sensitized devices. We have discussed some of our relevant works on biologically important organic pigments, Hematoporphyrin (HP) and Protoporphyrin IX (PP) as photosensitizer to the solar devices. Our study on HP functionalized ZnO nanorod (NR) arrays shows efficient electron migration from photoexcited HP to the host ZnO NRs leading to successful realization of twin applications of HP-ZnO nanohybrids in efficient VLP and DSSC. Another study reveals the role of iron ion and its oxidation states in electron transfer processes in HP functionalized titania. From the practical application point of view, use of porphyrin-based photocatalytic devices for water decontamination is very important, given the fact that water from natural resources contains metal ions (Fe3+ and Cu2+ especially). We have synthesized and characterized a PP-ZnO nanohybrid for a flow-type photocatalytic solar device for a prototype water decontamination plant using visible light. We explored the role of metal ions, specifically, iron (III) and copper (II) in the test water with a model contaminant, methylene blue (MB) and rationalized our observations from femtosecond to picosecond resolved electronic spectroscopic studies.


Light-Harvesting Nanohybrids; Metalloporphyrins; Photoinduced Electron Transfer; UV and Visible-light Photocatalysis; Porphyrin-Sensitized Solar Cell; Reactive oxygen species (ROS); femtosecond transient absorption spectroscopy

Full Text:



K. Sauer. A role for manganese in oxygen evolution in photosynthesis. Acc. Chem. Res. 1980, 13, 249-56.

K.S. Suslick, R.A. Watson. The photochemistry of chromium, manganese and iron porphyrin complexes. New J. Chem. 1992, 16, 633-42.

A. Maldotti, R. Amadelli, C. Bartocci, V. Carassiti, E. Polo, G. Varani. Photochemistry of Iron-porphyrin complexes. Biomimetics and catalysis. Coord. Chem. Rev. 1993, 125, 143-54.

W.D. Edwards, B. Weiner, M.C. Zerner. Electronic structure and spectra of various spin states of (porphinato)iron(III) chloride. J. Phys. Chem. 1988, 92, 6188-97.

Y. Ozaki, K. Iriyama, H. Ogoshi, T. Kitagawa. Ligand-aided photoreduction of iron-porphyrin complexes probed by resonance Raman spectroscopy. J. Am. Chem. Soc. 1987, 109, 5583-86.

C. Bartocci, F. Scandola, A. Ferri, V. Carassiti. Photoreduction of hemin in alcohol-containing mixed solvents. J. Am. Chem. Soc. 1980, 102, 7067-72.

J.-M. Lehn. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed. 1988, 27, 89-112.

L. Que, W.B. Tolman. Biologically inspired oxidation catalysis. Nature 2008, 455, 333-40.

D. Astruc. Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nat. Chem. 2012, 4, 255-67.

O. Legrini, E. Oliveros, A.M. Braun. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671-98.

M.A. Fox, M.T. Dulay. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341-57.

M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69-96.

C.C. Chen, X.Z. Li, W.H. Ma, J.C. Zhao, H. Hidaka, N. Serpone. Effect of transition metal ions on the TiO2 -assisted photo-degradation of dyes under visible irradiation: A probe for the interfacial electron transfer process and reaction mechanism. J. Phys. Chem. B 2002, 106, 318-24.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-71.

N. Lu, X. Quan, J. Li, S. Chen, H. Yu, G. Chen. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J. Phys. Chem. C 2007, 111, 11836-42.

X.Z. Li, F.B. Li. Study of Au/Au 3+ -TiO 2 Photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 2001, 35, 2381-87.

Z. Zhang, W. Wang, L. Wang, S. Sun. Enhancement of Visible-Light Photocatalysis by Coupling with Narrow-Band-Gap Semiconductor: A Case Study on Bi2S3/Bi2WO6. ACS Appl. Mater. Interfaces 2012, 4, 593−97.

J. Jiang, X. Zhang, P. Sun, L. Zhang. ZnO/BiOI Heterostructures: Photoinduced Charge-Transfer Property and Enhanced Visible-Light Photocatalytic Activity. J. Phys. Chem. C 2011, 115, 20555-64.

G.S. Li, D.Q. Zhang, J.C. Yu. A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ. Sci. Technol. 2009, 43, 7079-85.

H. Zhang, R.L. Zong, J.C. Zhao, Y.F. Zhu. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ. Sci. Technol. 2008, 42, 3803-07.

W. Zhao, Y. Sun, F.N. Castellano. Visible-Light Induced Water Detoxification Catalyzed by Pt II Dye Sensitized Titania. J. Am. Chem. Soc. 2008, 130, 12566-67.

Q. Sun, Y. Xu. Sensitization of TiO2 with Aluminum Phthalocyanine: Factors Influencing the Efficiency for Chlorophenol Degradation in Water under Visible Light. J. Phys. Chem. C 2009, 113, 12387-94.

E. Bae, W. Choi. Highly Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO2 under Visible Light. Environ. Sci. Technol. 2003, 37, 147-52.

B. Oregan, M. Gratzel. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-40.

A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

H. Zhou, T. Fan, D. Zhang. Biotemplated Materials for Sustainable Energy and Environment: Current Status and Challenges. ChemSusChem 2011, 4, 1344-87.

Y. Sun, Q. Wu, G. Shi. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113-32.

L.M. Peter. The Grätzel Cell: Where Next? J. Phys. Chem. Lett. 2011, 2, 1861-67.

J.N. Demas, D. Diemente, E.W. Harris. Oxygen quenching of charge-transfer excited states of ruthenium(II) complexes. Evidence for singlet oxygen production. J. Am. Chem. Soc. 1973, 95, 6864-65.

S.L. Buell, J.N. Demas. Heterogeneous preparation of singlet oxygen using an ion-exchange-resin-bound tris(2,2'-bipyridine)ruthenium(II) photosensitizer. J. Phys. Chem. 1983, 87, 4675-81.

J.W. Dobrucki. Interaction of oxygen-sensitive luminescent probes Ru(phen)32+ and Ru(bipy)32+ with animal and plant cells in vitro: Mechanism of phototoxicity and conditions for non-invasive oxygen measurements. J. Photochem. Photobiol. B 2001, 65, 136-44.

N. Robertson. Optimizing Dyes for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2006, 45, 2338-45.

H. Hayashi, I.V. Lightcap, M. Tsujimoto, M. Takano, T. Umeyama, P.V. Kamat, H. Imahori. Electron Transfer Cascade by Organic/Inorganic Ternary Composites of Porphyrin, Zinc Oxide Nanoparticles, and Reduced Graphene Oxide on a Tin Oxide Electrode that Exhibits Efficient Photocurrent Generation. J. Am. Chem. Soc. 2011, 133, 7684-87.

A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yehet. al. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629-34.

L.-L. Li, E.W.-G. Diau. Porphyrin-sensitized solar cells. Chem. Soc. Rev. 2013, 42, 291-304.

M.-y. Duan, J. Li, G. Mele, C. Wang, X.-f. Lü, G. Vasapollo, F.-x. Zhang. Photocatalytic Activity of Novel Tin Porphyrin/TiO2 Based Composites. J. Phys. Chem. C 2010, 114, 7857-62.

E.A. Lissi, M.V. Encinas, E. Lemp, M.A. Rubio. Singlet oxygen O2(1.DELTA.g) bimolecular processes. Solvent and compartmentalization effects. Chem. Rev. 1993, 93, 699-723.

M.J. Griffith, K. Sunahara, P. Wagner, K. Wagner, G.G. Wallace, D.L. Officer, A. Furube, R. Katohet. al. Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Chem. Commun. 2012, 48, 4145-62.

T. Bessho, S.M. Zakeeruddin, C.-Y. Yeh, E.W.-G. Diau, M. Grätzel. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor–Acceptor-Substituted Porphyrins. Angew. Chem. 2010, 122, 6796-99.

S. Sarkar, A. Makhal, T. Bora, K. Lakhsman, A. Singha, J. Dutta, S.K. Pal. Hematoporphyrin–ZnO Nanohybrids: Twin Applications in Efficient Visible-Light Photocatalysis and Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2012, 4, 7027-35.

N. Masi Reddy, T.-Y. Pan, Y. Christu Rajan, B.-C. Guo, C.-M. Lan, E. Wei-Guang Diau, C.-Y. Yeh. Porphyrin sensitizers with [small pi]-extended pull units for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8409-15.

T. Hasobe. Supramolecular nanoarchitectures for light energy conversion. Phys. Chem. Chem. Phys. 2010, 12, 44-57.

S. Rodrigues, K.T. Ranjit, S. Uma, I.N. Martyanov, K.J. Klabunde. Single-Step Synthesis of a Highly Active Visible-Light Photocatalyst for Oxidation of a Common Indoor Air Pollutant: Acetaldehyde. Adv. Mater. 2005, 17, 2467-71.

A.A. Ismail, D.W. Bahnemann. Metal-Free Porphyrin-Sensitized Mesoporous Titania Films For Visible-Light Indoor Air Oxidation. ChemSusChem 2010, 3, 1057-62.

D. Li, W. Dong, S. Sun, Z. Shi, S. Feng. Photocatalytic Degradation of Acid Chrome Blue K with Porphyrin-Sensitized TiO2 under Visible Light. J. Phys. Chem. C 2008, 112, 14878-82.

H. Huang, X. Gu, J. Zhou, K. Ji, H. Liu, Y. Feng. Photocatalytic degradation of Rhodamine B on TiO2 nanoparticles modified with porphyrin and iron-porphyrin. Catal. Commun. 2009, 11, 58-61.

G. Granados-Oliveros, E.A. Páez-Mozo, F.M. Ortega, C. Ferronato, J.-M. Chovelon. Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl. Catal., B 2009, 89, 448-54.

T. Shiragami, J. Matsumoto, H. Inoue, M. Yasuda. Antimony porphyrin complexes as visible-light driven photocatalyst. J. Photochem. Photobiol. C 2005, 6, 227-48.

A. Maldotti, L. Andreotti, A. Molinari, V. Carassiti. Photochemically driven models of oxygenases based on the use of iron porphyrins. J. Biol. Inorg. Chem. 1999, 4, 154-61.

D. Ricard, M. L'Her, P. Richard, B. Boitrel. Iron Porphyrins as Models of Cytochrome c Oxidase. Chem. Eur. J. 2001, 7, 3291-97.

N. Hessenauer-Ilicheva, A. Franke, D. Meyer, W.-D. Woggon, R. van Eldik. Mechanistic Insight into Formation of Oxo-Iron(IV) Porphyrin π-Cation Radicals from Enzyme Mimics of Cytochrome P450 in Organic Solvents. Chem. Eur. J. 2009, 15, 2941-59.

Y. Shen, U. Ryde. Reaction Mechanism of Porphyrin Metallation Studied by Theoretical Methods. Chem. Eur. J. 2005, 11, 1549-64.

M. Inamo, N. Kamiya, Y. Inada, M. Nomura, S. Funahashi. Structural Characterization and Formation Kinetics of Sitting-Atop (SAT) Complexes of Some Porphyrins with Copper(II) Ion in Aqueous Acetonitrile Relevant to Porphyrin Metalation Mechanism. Structures of Aquacopper(II) and Cu(II)−SAT Complexes As Determined by XAFS Spectroscopy. Inorg. Chem. 2001, 40, 5636-44.

S. Funahashi, Y. Inada, M. Inamo. Dynamic Study of Metal-Ion Incorporation into Porphyrins Based on the Dynamic Characterization of Metal Ions and on Sitting-Atop Complex Formation. Anal. Sci. 2001, 17, 917-27.

H.Z. Yu, J.S. Baskin, B. Steiger, C.Z. Wan, F.C. Anson, A.H. Zewail. Femtosecond dynamics of metalloporphyrins: electron transfer and energy redistribution. Chem. Phys. Lett. 1998, 293, 1-8.

C. Wang, J. Li, G. Mele, G.-M. Yang, F.-X. Zhang, L. Palmisano, G. Vasapollo. Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Appl. Catal., B 2007, 76, 218-26.

N. Nasuha, B.H. Hameed, A.T.M. Din. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. J. Hazard. Mater. 2010, 175, 126-32.

S. Sarkar, A. Makhal, K. Lakshman, T. Bora, J. Dutta, S.K. Pal. Dual-Sensitization via Electron and Energy Harvesting in CdTe Quantum Dots Decorated ZnO Nanorod-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 14248-56.

S. Sardar, S. Sarkar, M.T.Z. Myint, S. Al-Harthi, J. Dutta, S.K. Pal. Role of central metal ions in hematoporphyrin-functionalized titania in solar energy conversion dynamics. Phys. Chem. Chem. Phys. 2013, 15, 18562-70.

P. Kar, S. Sardar, E. Alarousu, J. Sun, Z.S. Seddigi, S.A. Ahmed, E.Y. Danish, O.F. Mohammed, S.K. Pal. Impact of Metal Ions in Porphyrin-Based Applied Materials for Visible-Light Photocatalysis: Key Information from Ultrafast Electronic Spectroscopy. Chem. Eur. J. 2014, DOI: 10.1002/chem.201402632.

J. Sun, W. Yu, A. Usman, T.T. Isimjan, S. Dgobbo, E. Alarousu, K. Takanabe, O.F. Mohammed. Generation of Multiple Excitons in Ag2S Quantum Dots: Single High-Energy versus Multiple-Photon Excitation. J. Phys. Chem. Lett. 2014, 5, 659-65.

S. Baruah, M.A. Mahmood, M.T.Z. Myint, T. Bora, J. Dutta. Beilstein J. Nanotechnol. 2010, 1, 14-20.

R.C. Srivastava, V.D. Anand, W.R. Carper. A Fluorescence Study of Hematoporphyrin. Appl. Spectroscopy 1973, 27, 444-49.

P. Castillero, J.R. Sanchez-Valencia, M. Cano, J.M. Pedrosa, J. Roales, A. Barranco, A.R. Gonzalez-Elipe. Active and Optically Transparent Tetracationic Porphyrin/TiO2 Composite Thin Films. ACS Appl. Mater. Interfaces. 2010, 2, 712–21.

W. Tu, J. Lei, P. Wang, H. Ju. Photoelectrochemistry of Free-Base-Porphyrin-Functionalized Zinc Oxide Nanoparticles and Their Applications in Biosensing. Chem. Eur. J. 2011, 17, 9440 - 47.

T. Hasobe, K. Saito, P.V. Kamat, V. Troiani, H. Qui, N. Solladie, K.S. Kim, J.K. Parket. al. J. Mater. Chem. 2007, 17, 4160-70.

H. Saarenpaa, E. Sariola-Leikas, A.P. Perros, J.M. Kontio, A. Efimov, H. Hayashi, H. Lipsanen, H. Imahoriet. al. Self-Assembled Porphyrins on Modified Zinc Oxide Nanorods: Development of Model Systems for Inorganic−Organic Semiconductor Interface Studies. J. Phys. Chem. C 2012, 116, 2336−43.

H.M. Cheng, W.F. Hsieh. Electron transfer properties of organic dye-sensitized solar cells based on indoline sensitizers with ZnO nanoparticles. Nanotechnology 2010, 21, 485202.

G.B. Deacon, R.J. Phillips. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227-50.

Y. Zhang, H. Jia, R. Wang, C. Chen, X. Luo, D. Yu, C. Lee. Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Appl. Phys. Lett. 2003, 83, 4631-33.

P. Jiang, J.J. Zhou, H.F. Fang, C.Y. Wang, Z.L. Wang, S.S. Xie. Adv. Funct. Mater. 2007, 17, 1303.

S. Sarkar, A. Makhal, K. Lakshman, T. Bora, J. Dutta, S.K. Pal. “Dual-Sensitization” via Electron and Energy Harvesting in CdTe Quantum Dots Decorated ZnO Nanorod-based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 14248−56.

V. Shklover, M.K. Nazeeruddin, S.M. Zakeeruddin, C. Barbé, A. Kay, T. Haibach, W. Steurer, R. Hermannet. al. Structure of Nanocrystalline TiO2 Powders and Precursor to Their Highly Efficient Photosensitizer. Chem. Mater. 1997, 9, 430-39.

H.C. Choi, Y.M. Jung, S.B. Kim. Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc 2005, 37, 33-38.

S. Franzen, L. Kiger, C. Poyart, J.-L. Martin. Heme Photolysis Occurs by Ultrafast Excited State Metal-to-Ring Charge Transfer. Biophys. J . 2001, 80, 2372-85.

S. Fujihara, H. Naito, T. Kimura. Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF2 thin-films via sol–gel process. Thin Solid Films 2001, 389, 227-32.

E. Collini, C. Ferrante, R. Bozio. Strong Enhancement of the Two-Photon Absorption of Tetrakis(4-sulfonatophenyl)porphyrin Diacid in Water upon Aggregation. J. Phys. Chem. B 2004, 109, 2-5.

S. Verma, A. Ghosh, A. Das, H.N. Ghosh. Ultrafast Exciton Dynamics of J- and H-Aggregates of the Porphyrin-Catechol in Aqueous Solution. J. Phys. Chem. B 2010, 114, 8327-34.

G. Mele, R. Sole, G. Vasapollo, E. García-López, L. Palmisano, L. Jun, R. Słota, G. Dyrda. TiO2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions: role of metal and macrocycle. Res. Chem. Intermed. 2007, 33, 433-48.

S.G. Kruglik, P.A. Apanasevich, V.S. Chirvony, V.V. Kvach, V.A. Orlovich. Resonance Raman, CARS, and Picosecond Absorption Spectroscopy of Copper Porphyrins: The Evidence for the Exciplex Formation with Oxygen-Containing Solvent Molecules. J. Phys. Chem. 1995, 99, 2978-95.

D. Kim, D. Holten, M. Gouterman. Evidence from picosecond transient absorption and kinetic studies of charge-transfer states in copper(II) porphyrins. J. Am. Chem. Soc. 1984, 106, 2793-98.

S. Sarkar, A. Makhal, S. Baruah, M.A. Mahmood, J. Dutta, S.K. Pal. Nanoparticle-Sensitized Photodegradation of Bilirubin and Potential Therapeutic Application. J. Phys. Chem. C 2012, 116, 9608-15.

S. Afzal, W.A. Daoud, S.J. Langford. Photostable Self-Cleaning Cotton by a Copper(II) Porphyrin/TiO2 Visible-Light Photocatalytic System. ACS Appl. Mater. Interfaces 2013, 5, 4753-59.

E.B. Fleischer, E.I. Choi, P. Hambright, A. Stone. Porphyrin Studies: Kinetics of Metalloporphyrin Formation. Inorg Chem 1964, 3, 1284-87.

P. Castillero, J.R. Sánchez-Valencia, M. Cano, J.M. Pedrosa, J. Roales, A. Barranco, A.n.R. González-Elipe. Active and Optically Transparent Tetracationic Porphyrin/TiO2 Composite Thin Films. ACS Appl. Mater. Interfaces 2010, 2, 712-21.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe−TiO2 Architecture. J. Am. Chem. Soc. 2008, 130, 4007-15.

A. Kathiravan, P.S. Kumar, R. Renganathan, S. Anandan. Photoinduced electron transfer reactions between meso-tetrakis(4-sulfonatophenyl)porphyrin and colloidal metal-semiconductor nanoparticles. Colloids Surf., A 2009, 333, 175-81.


  • There are currently no refbacks.

ISSN 2394-0867

Indexed in: