Soft oxometalates

Soft-oxometalates: Patterning and Catalysis

Subharanjan Biswas, Soumyajit Roy


Soft-oxometalates (SOMs), oxometalates with soft-matter properties have been designed in recent times, and are gaining importance. Owing to their soft nature they can be tuned, activated and patterned deliberately. These properties thus render them as active catalytic model systems. In this review we highlight photo-active catalytic properties of oxometalates. Using oxometalates we synthesize larger SOMs in a controlled manner and use them in catalysis as well. For exercising even higher control we pattern the oxometalates using thermo-optic tweezers. Thereafter we use these patterned systems in catalysis. We also will discuss the factors controlling the self-assembly of SOMs and those controlling the patterning. The review will conclude with perspectives for future directions and applications.


Soft-oxometalates; Photoactivity; Optical tweezers; Patterning; Catalysis.

Full Text:



M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer: Berlin, 1983.

C. L. Hill, Ed. Chem. Rev. Thematic Issue on Polyoxometalates, ACS: Washington, USA, 1998; vol. 98.

M. T. Pope, A. Müller. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines. Angew. Chem., Int. Ed. Engl. 1991, 30, 34-38.

Inorganic Synthesis, A. P. Ginsberg, Ed.; John Wiley & Sons, Inc.: New Jersey, USA, 1990, vol. 27, p. 71.

Comprehensive Coordination Chemistry, L. Cronin, J. A. McCleverty, T. J. Meyer, Ed.; Elsevier: Amsterdam, 2004.

Polyoxometalate Chemistry for Nanocomposite Design, T. Yamase, M. T. Pope, Ed.; Kluwer Academic Publishers: New York, 2002.

Introduction to Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications, M. T. Pope, A. Müller, Ed.; Kluwer Academic Publishers: New York, 2001.

S. Roy, “Soft Oxometalates” (SOMs): A Very Short Introduction. Comments Inorg. Chem. 2011, 32, 113-126.

S. Roy, Ed., J. Mol. Eng. Mater. "Soft-Oxometalates (SOMs): Towards New Oxometalate-Based Materials", World Scientific: Singapore, 2014, 2.

S. Roy, Soft-oxometalates beyond crystalline polyoxometalates: formation, structure and properties. Cryst. Eng. Comm. 2014, 16, 4667-4676.

P.-G. de Gennes, Soft Interfaces, Cambridge University Press: Cambridge, 1997.

Z. Zhang, S. C. Glotzer. Self-Assembly of Patchy Particles. Nano Lett. 2004, 4, 1407-1413.

A. Müller, et. al., Archimedean Synthesis and Magic Numbers: “Sizing” Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type. Angew. Chem., Int. Ed. 1999, 38, 3238-3241.

E. Mani, E. Sanz, S. Roy, M. Dijkstra, J. Groenewold, W. K. Kegel. Sheet-like assemblies of spherical particles with point-symmetrical patches. J. Chem. Phys. 2012, 136, 144706(1-6).

A. Verhoeff, M. L. Kistler, A. Bhatt, J. Pigga, J. Groenewold, M. Klokkenburg, S. Veen, S. Roy, T. Liu, W. K. Kegel. Charge Regulation as a Stabilization Mechanism for Shell-Like Assemblies of Polyoxometalates. Phys. Rev. Lett. 2007, 99, 066104(1-4).

A. Müller and S. Roy, Oxomolybdates: From Structures to Functions in a New Era of Nanochemistry, in The Chemistry of Nanomaterials: Synthesis, Properties and Applications, C. N. R. Rao, A. Müller, A. K. Cheetham, Ed., Wiley-VCH: Weinheim, 2005, pp. 452.

A. Sahasrabudhe, S. Roy. Photoactive Gold Nanoparticle Softoxometalates

(SOM) using a Keplerate for Synthesis of Polystyrene Latex Microspheres by Photo-polymerization. J. Mol. Eng. Mater. 2014, 2, 1440002.

S. Roy, M. Rijneveld-Ockers, J. Groenewold, B. Kuipers, H. Meeldijk, W. K. Kegel, Spontaneous Formation of Micrometer-Size Inorganic Peapods. Langmuir, 2007, 23, 5292-5295.

B. Roy, A. Sahasrabudhe, B. Parasar, N. Ghosh, P. K. Panigrahi, A. Banerjee, S. Roy, Micro-Optomechanical Movements (MOMs) with SoftOxometalates (SOMs): Controlled Motion of Single Soft-Oxometalate Pea-pods Using Exotic Optical Potentials. J. Mol. Eng. Mater. 2014, 2, 1440006.

B. Roy, M. Arya, P. Thomas, J. K. Jürgschat, K. V. Rao, A. Banerjee, C. M. Reddy, S. Roy, Self-Assembly of Mesoscopic Materials to form Controlled and Continuous Patterns by Thermo-Optically Manipulated Laser

Induced Microbubbles. Langmuir 2013, 29, 14733−14742.

P. Prinsen, T. Odijk, Optimized Baxter model of protein solutions: Electrostatics versus adhesion, J. Chem. Phys. 2004, 121, 6525.

A. Patti, M. Dijkstra, Do Multilayer Crystals Nucleate in Suspensions of Colloidal Rods? Phys. Rev. Lett. 2009, 102, 128301.

J. Israelachvili. Intermolecular and Surface Forces, Academic: San Diego, CA, 1992.

Y. Cui, Q. Wei, H. Park, C. M. Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.

M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, H. Park. Resonant Electron Scattering by Defects in Single-Walled Carbon Nanotubes. Science 2001, 291, 283-285.

C. Kan, X. G. Zhu, G. H. Wang. Single-Crystalline Gold Microplates: Synthesis, Characterization, and Thermal Stability. J. Phys. Chem. B 2006, 110, 4651-4656.

S. Link, M. A. El-Sayed. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217.

T. Sawitowski, Y. Miquel, A. Heilmann, G. Schmid. Optical Properties of Quasi One-Dimensional Chains of Gold Nanoparticles. Adv. Funct. Mater. 2001, 11, 435-440.

Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60-103.

T. T. Perkins. Optical traps for single molecule biophysics: a primer. Laser Photonics Rev. 2008, 3, 203-220.

B. Roy, N. Ghosh, S. Dutta Gupta, P. Panigrahi, S. Roy, A. Banerjee. Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap. Phys. Rev. A: At., Mol., Opt. Phys. 2013, 87, 043823(1-6).

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten. Capillary Flow As the Cause of Ring Stains from Dried Liquid Drops. Nature 1987, 389, 827−829.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, M.-A. Haga. Fabrication and Placement of a Ring Structure of Nanoparticles by a Laser-Induced Micronanobubble on a Gold Surface. Langmuir 2011, 27, 8605−8610.

T. Uwada, S. Fuji, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, M. Haga, ACS Glycine Crystallization in Solution by CW Laser-Induced Microbubble on Gold Thin-film Surface. ACS Appl. Mater. Interfaces 2012, 4, 1158−1163.

D. Erdemir, Y. Lee, S. Myerson. Nucleation of Crystals from Solution: Classical and Two-Step Models. Acc. Chem. Res. 2009, 42, 621−629.

R. J. Davey, S. L. M. Schroeder, J. H. ter Horst, Nucleation of Inorganic Crystals - A Molecular Perspective. Angew. Chem., Int. Ed. 2013, 52, 2166−2179.

P. G. Vekilov. Nucleation. Cryst. Growth Des. 2010, 10, 5007−5019.

D. W. Berry, N. R. Heckenberg, H. Rubinsztein-dunlop. Effects Associated with Bubble Formation in Optical Trapping. J. Mod. Opt. 2000, 47, 1575−1585.

Y. Ogura, N. Shirai, J. Tanida. Optical Levitation and Translation of a Microscopic Particle by Use of Multiple Beams Generated by Vertical-Cavity Surface-Emitting Laser Array Sources. Appl. Opt. 2002, 41, 5645−5654.


  • There are currently no refbacks.

ISSN 2394-0867

Indexed in: