
Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2021, 9(2), 70-74          70 

 

J. Integr. Sci. Technol. 2021, 9(2), 70-74                                                            .   Article . 

 
Journal of Integrated 

SCIENCE & TECHNOLOGY 

Deep learning Convolutional Neural Network (CNN) for Cotton, Mulberry and 
Sugarcane Classification using Hyperspectral Remote Sensing Data 
Kavita Bhosle,* Bhakti Ahirwadkar 

Department of Computer Science and Engineering, Marathwada Institute of Technology (MIT), Aurangabad, Maharashtra, India  

Received on: 20-Sept-2021, Accepted and Published on: 04-Nov-2021 

ABSTRACT 

Crop Classification using remote sensing data is important for calculating crop sown area and predicting the crop production. Accuracy in data 
will help to regulate marketing of the produce. Present study aims to examine the use of deep learning convolutional neural network (CNN) to 
overcome the difficulties arising in crop identification with satellite images. In the present work, EO-1 Hyperion hyperspectral images have been 
used for identifying cotton, sugarcane and mulberry crop. Structured data has been extracted from hyperspectral data for performing 
experiments. Deep learning convolutional neural network (CNN) is compared with deep feed forward neural network (FFNN). It is observed that, 
deep learning CNN provided 99.33 % accuracy, while deep FFNN gave 96.6 % accuracy. Empirical results demonstrate that CNN works well in 
practice and compares appreciatively to deep FFNN methods. Moreover, deep learning CNN has demonstrated efficiently for smaller size dataset. 

Keywords: Remote sensing data, Convolutional neural network, Principal component analysis, Hyperspectral data, Deep learning, Deep Feed 
Forward Neural Network. 

INTRODUCTION 
Deep learning is one of the most versatile modern techniques for 

feature extraction and classification. This technique has shown 
promising results and huge potential in the field of agriculture. Use 
of Hyperspectral and Multispectral remote sensing images for 
analysing the spectral and spatial classification has been explored 
widely in recent time.1,2 In agriculture domain, different crops can 

be identified and discriminated using remote sensing images.3 
Hyperspectral data needs to be atmospherically corrected to remove 
the noise. Atmospheric corrections performed using QUACK 
(Quick Atmospheric Correction) algorithm, is used.4 In 
hyperspectral images, hundreds of bands for one scene provide 
more accurate information. EO-1 Hyperion sensor provides data of 
242 bands with a spectral and spatial resolution of 10 nm and 30 m 
respectively. Only 155 out of 242 bands were selected after 
atmospheric correction. 

PCA plays a significant role to reduce the dimensions or number 
of bands of hyperspectral images.5  Kernel PCA is used by 
numerous researchers to extract the useful bands from a hundreds 
of hyperspectral.6–8 

Land cover classification of Remote sensing data has also been 
studied using convolutional neural.9,10 For extraction and 
classification of remote sensing images, deep learning can be 
employed.11 The crop can be identified by the reflectance given by 
the green vegetation area. Each crop has different red edge point in 
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NIR region.12 Crop type is identified according to its red edge point 
and the reflectance given by the green vegetation area. Some papers 
report that the use of CNN improves the accuracy.13 CNN is also 
used for scene and  region based classification.14 The research 
studies have proposed remote sensing image fusion with deep 
learning CNN.15 CNN based flexible momentum with PCA and 
SVM has been used for hyperspectral data classification.16  
Successful proposal of parameter transfer learning and correlation 
based CNN model have been suggested in literature.17 CNN has 
been used by many researchers for hyperspectral image 
classification. For spectral and spatial classification of 
hyperspectral imagery, 3D CNN has been implemented.18 The deep 
feature extraction and classification of hyperspectral data using 
CNN have been proposed by Yushi et al.19 Deep learning features 
have been extracted by multiscale convolutional auto encoder.20 A 
researcher suggested hyperspectral image classification using deep 
pixel pair features.10 For crop discrimination, temporal data indices 
have been  used.21 Very high resolution (VHR) remote sensing (RS) 
images can be classified using CNN.22 

METHODOLOGY 
Framework of Deep Learning Classification 

  

Figure 1. Flowchart of the proposed system.  
 
As shown in Figure 1, atmospherically corrected data is provided 

to the ENVI tool in order to obtain ASCII values of each pixel. 
ASCII values of region of interest (ROI) are combined with the 

ground truth and given to the PCA as an input. CNN is further used 
for pixel classification.23 Deep learning CNN is compared with 
deep feed forward NN.24 
Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a dimensionality-
reduction technique that has been used to transform a high-
dimensional dataset into a smaller-dimensional subspace prior to 
running a machine learning algorithm on the data.25 Hyper spectral 
data has lots of information in hundreds of bands. In order to get 
more information and reduce the number of bands, PCA produces 
informative and significant principal components using the Eigen 
values and the Eigen vectors.26  
Deep Learning Convolutional Neural Network 

Deep learning CNN consist of alternate convolutional layer and 
max pooling layer connected to the fully connected layer. 
Convolutional layer 

In the present work a n x n square neuron layer is set which is 
followed by our convolutional layer. If we use an m x m filter w, 
our convolutional layer output will be of the size (n−m+1) × 
(n−m+1). It is required to sum up the contributions, weighted by 
the filter components from the previous layer cells, add bias term 
and then apply the activation function. 
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Max Pooling layers  
The max-pooling layers are quite simple. They simply take some 

k x k region and output a single value, which is maximum for that 
region. For instance, if their input layer is a n x n layer, The output 
will be a (n/k) x (n/k) layer, as each k x k block is reduced to just a 
single value via the max function.  

An error function L is defined. The error we need to compute for 
the previous layer is the partial of L with respect to each neuron 
output (∂L/∂F). Using chain rule, gradient component for each 
weight is given as below 
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We already know the error at the current layer. The deltas at the 
current layer are computed by using the derivative of the activation 
function, σ′(x). 
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Multilayer 2D CNN has been implemented by applying ReLU 

convolution layer and max pooling dropout layer proposed 
architecture as shown in Figure 2. 

The details of each layer of CNN are as shown in Table 1. 
Similarly proposed deep feed forward neural network is as given in 
Table 2. The architecture of a convolution layer consists of ReLU 
kernel of 1 X 1 followed by one max pooling dropout layer.27  

It has been connected with fully connected dense layer using the 
softmax function. In an artificial neural network, activation 
functions decide whether a neuron should be activated or not, 
whether the information contained by the neuron is relevant or not. 

Hyperspectral 
 

Preprocessing - Removal of bad 
bands and Atmospheric 

i  

Extract reflectance value 
for region of interest 

Mapping reflectance value 
with ground truth value 

Preparing training and testing dataset 

Apply Principle Component 
Analysis (PCA) 

Apply Convolution Neural Network 
 

Compare Deep Learning CNN with Deep feed forward 
neural network 

http://en.wikipedia.org/wiki/Principal_component_analysis
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Rectified linear units (ReLUs) have been used for the hidden 
layers.28 A rectified linear unit yields an output x if x is positive and 
0 otherwise. single channelled CNN and a 3 x 3 filter have been 
used. Softmax function has been used in the output layer of CNN. 
The softmax is used here because more than two classes or crops 
are to be identified. It has given an equivalent output of each unit 
between 0 and 1.  
 
Table1. Details of Deep learning CNN 
 

Input Layer 6 x 6, 1 channel 
Convolutional 
Layer 1 

Stride=1, Padding=0, Filter Size=3 x 3, 
Number of Filter=25, Bias= 25 

Max Pooling 
Layer 1 

Stride=1, Padding=0, Filter Size=2 x 2, 
Number of Filter=25 

Convolutional 
Layer 2 

Stride=1, Padding=0, Filter Size=2 x 2, 
Number of Filter=25, Bias= 25 

Flattening 25X 1 vector 
Fully 
Connected 
Layer  

Hidden nodes=10, bias=10 

Output Layer Output node=3 bias=3 
 
Table2. Details of Deep Feed Forward NN 

Input Layer 6 x 6=36 input vector 
Fully Connected Layer 1 Hidden nodes=25, bias=25 
Fully Connected Layer 2 Hidden nodes=25, bias=25 
Fully Connected Layer 3 Hidden nodes=25, bias=25 
Output Layer Output node=3 bias=3 

 

STUDY AREA AND TEST DATA 
The Area considered in this study is the Aurangabad district 

region, in Maharashtra, India. The study area lies between upper 
left corner latitude, longitude (20.31, 75.40), upper right corner 
latitude, longitude (20.29, 75.47), lower left corner latitude, 
longitude (19.37, 75.26), lower right corner latitude, longitude 

(19.39,75.18) in 
Waregaon village, 
Aurangabad district of 

Maharashtra. 
Required data is 
collected from space 
borne hyperspectral 
remote sensing data 
(EO-1 Hyperion) 
acquired on Dec 24, 
2015. In the selected 
study area, the 
weather is clear and 
non cloudy and the 
crop under study 
attains its middle stage 
of growth with enough 
foliage in winter. 
Hence the crop has 
been studied in winter 

season. Same study area of Aurangabad district was used.21 
Mulberry crop have many uses so required to identify plants using 
remote sensing data. 

EXPERIMENTAL  
Crop classification has been performed with the help of 

hyperspectral USGS EO-1 images.29 Hyperspctral data needs to be 
atmospherically corrected to remove noise. In this study, 
atmospheric corrections are obtained using QUACK (Quick 
Atmospheric Correction) algorithm.30 Excluding bad bands and 
after atmospheric correction, hyperspectral data of 155 bands is 
used in this study.31 The crops considered in this study are cotton, 
mulberry and sugarcane. Signature has been observed by plotting 
graph of wavelength versus reflectance. Signature of each crop is 
different as shown in Figure 3(a) (b) (c). 

Figure 4 shows graph of cumulative explained variance for each 
principal component using hyperspectral EO-1 Hyperion data for 
the region of interest (ROI).32  

Experiments are conducted in python tensorflow environment 
for PCA and CNN. 155 bands are given as input to the PCA. Graph 
shows that after 36 principal components, variance remains 
constant. First 36 components given more information Therefore 
these components are considered for conducting the experiment. 

Table 3 shows dataset used in classification for training and 
testing the model. Total 500 records are used, 60 % for training and 
40 % for testing. 

Table 3. Dataset for each class for Deep Learning CNN and Deep 
FFNN 

Class Training Test 

Cotton 158 104 

Mulberry 58 40 
Sugarcane 84 56 

Total 300 200 

 
 
Figure 2. Architecture of Deep Learning Convolutional Neural Network. 
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 (a) 

 
(b) 

 
                                 (c) 

Figure 3. (a) Signature of cotton (b) Signature of Mulberry (c) (b) 
Signature of Sugarcane 
 

 
Figure 4. Cumulative explained variance of each principal component 
for hyperspectral EO-1 Hyperion data 

As shown in Figure 2, Convolutional neural network with 0.01 
learning rate, 16 batch size and Adam optimizer has been 
implemented. Table 1 shows that deep learning CNN architecture 
consist of a convolutional layer followed by a max pooling layer 
and a Convolutional layer, connected to fully connected layer. Deep 
feed forward network consist of three fully connected hidden layers 
of 25 nodes each. Table 3 shows comparison between deep learning 
CNN and deep FFNN on the basis of accuracy, loss and parameters 
generated in each classifier.6 

It has been observed that accuracy of DL CNN is 99.3 % whereas 
accuracy that of deep FFNN is 96.6 %. Loss is less in DL CNN 
compared to deep FFNN. In the proposed system, storage space 
depends on parameters generated in each classifier. 3068 
parameters are generated in DLCNN, whereas in deep FFNN, 
parameters are 4053 as shown in Table 4.  

 

Table 4. Comparison between Deep Learning CNN and Deep FFNN 

Methods Accuracy Loss #Parameter 
generated 

DL CNN 99.3 % 2.49 % 3,068 

Deep FFNN 96.6 % 2.74 % 4,053 

 

DISCUSSION 
Deep learning CNN works on structured and unstructured data 

effectively; this is the main purpose of using it. The features 
extraction is possible using Convolutional Neural Network. This 
model uses different parameters and those parameters have to be 
set while using it. Principal component analysis is important and 
used many researchers to reduce dimensions and to get more 
meaningful components. Unstructured Hyperspectral input has 
been given to the PCA in order to extract useful and informative 
bands. Spectral signature of crops has been used for classification. 
The samples of mulberry, cotton and sugarcane plants have been 
used to perform experiment for crop classification. DL CNN has 
given good accuracy compare to Deep feed Forward Neural 
Network. 60 % data has been given for training the model and 40 
% data has been given for testing the model. The reason for 
choosing Hyperspectral dataset is that it has many numbers of 
continuous spectral bands; therefore we can get more prominent 
signature of each crop. So it is an effective remote sensing data for 
crop identification. 

CONCLUSIONS 
In this study, a CNN approach is proposed for crop identification 

from EO-1 hyperspectral datasets. Hyperspectral data set has more 
number of bands so that signature of each crop is more prominent. 
This feature of Hyperspectral data is useful to identify crops.  

Deep learning CNN using multi step convolutional, ReLU, and 
pooling operators is used to classify three crops, cotton, mulberry, 
sugarcane which result better accurate result. Further, performance 

https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-018-0259-9#Sec14
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of deep learning CNN compared with Deep FFNN. Deep learning 
convolutional neural network gives more accurate result compared 
to deep FFNN. Principal component analysis has been used to 
reduce dimensions and to get more informative components. In this 
study we obtained 99.3 % accuracy and 2.49 % loss. In this study, 
small dataset is used for crop classification using hyperspectral data 
and deep learning convolutional neural network. It is observed that 
Deep learning CNN also work effectively with small dataset. 
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