Cover Image

Passive optical networks: A futuristic approach

Vikas Sharma, Sharad Sharma

Abstract


This paper is to know about the meaning of passive optical network`s and its architecture. It explains the different types of passive optical networks and its uses for the present as well as future of the communication. Passive optical networks provide the huge bandwidth for the data transmission for triple play (video-voice-data) simultaneously. Requirement for the high speed communication networks is the high bandwidth for the data transmission without interruption. Passive optical networks provide this facility very effectively.

Keywords


PON,APON,BPON,EPON,GPON,NGPON

Full Text:

PDF

References


Y. luo, Activities, drivers, and benefits of extending pon over other media, in: Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2013,1-3.

Saleh, J.S Immons, All optical networking-evaluation, benefits, challenges, and future vision, in: Proceedings of the IEEE, 2012, 100 (5), pp 1105-1117

https://doi.org/10.1109/JPROC.2011.2182589

M. Allen, C. Lio. Digital optical networks using photonic integrated circuits (PICS) address the challenge of reconfigurable optical networks. IEEE Comm. Mag. 2008, 46(1), 35-43.

https://doi.org/10.1109/MCOM.2008.4427228

Qaio, M. Yoo. Optical burst switching (OBS): a new paradigm for an optical high speed internetworking, IEEE Comm. Mag. 1999, 1, 69-84.

G. Terdik, T. G Yris, does the internet still dominate fractal nature? in: Proceedings of Eighth International Conference on Networks, Gosier, Guadeloupe, France, 2009, 30–34.

V. W. S. Chan, Optical flow switching networks, in: Proceedings of the IEEE, 2012, 100(5), 1079-1091.

https://doi.org/10.1109/JPROC.2012.2183629

Y. Wang, X Cao, Multi granular optical switching: a classified overview for the past and future, IEEE Communications Surveys & Tutorials. 2012 14(3), 698-713.

F. Davik, M. Yilma. IEEE 802.17, resilient packet ring tutorial, IEEE communication, Mag. 2004, 42 (3), 112-118.

https://doi.org/10.1109/MCOM.2004.1273782

M. S. Chen, R. Ramaswami. A media-access protocol for packet- switched wavelength division multi-access metropolitan area networks, IEEE J.Sel. Area communication. 1990, 8(6), 1048-1057.

A. Ganz, Y. Gao. Time wavelength assignment algorithm for high performance WDM star based system, IEEE Trans. Communication, 1994, 42 (234), 1827-1836.

https://doi.org/10.1109/TCOMM.1994.582891

J. C. Lu. A wavelength division multiple access protocol for high- speed local area networks with a passive star topology perform Evaluation, Adv. In Del. and Sci. 1992, 16 (1), 223-139.

B. Mukherjee. WDM based local light wave networks.1, single hop system. IEEE Commu. Soci. 1992, 6 (3), 12-27.

D. Banerjee, J. Frank, B. Mukherjee. Passive optical network architecture based on waveguide grating routing, IEEE J. Sel. Areas communication 1998, 16(7), .1040-1050.

A. Biancao, M. Mellia, F. Neri. Network controller design for sonata-a large scale all passive optical network, IEEE J. Sel. Area communication. 2000, 18(10), 2017-2018.

F. Effenberger, T. S. Ei-Bawab. Passive optical networks (PON`S) Past. Present and future, Opti. Switch Netw, 2009, 6, 143-150.

https://doi.org/10.1016/j.osn.2009.02.001

G. Kramer, M. De Andrade, R. Roy, P. Chowdhury, Evolution of Optical Access Networks: Architectures and Capacity Upgrades, Proceedings of the IEEE, special issue on The Evolution of Optical Networking, 2012, 100(5), 1188-1196,

https://doi.org/10.1109/JPROC.2011.2176690

R. Yadav. Passive optical network based cove raged access network, IEEE/OSA Jour. Optic. Networking 2012, 4 (11), 124-130.

K. Pagaiatakis, Active optical access networks, IETY Communication Eng. 2003, 1(2), 34-37.

https://doi.org/10.1049/ce:20030208

T. holemberg, Analysis of EPONs under the static priority scheduling scheme with fixed transmission times, in: Proceeding of 2nd Conference on Next Generation Internet Design and Eengineering, 2006, 192-199.

J. Zhang. N. Ansari, On the Capacity of WDM Passive optical networks, IEEE Trans. Communication 2011 59 (2), 552-559.

https://doi.org/10.1109/TCOMM.2011.111710.100011

N. F. Naim, A. Bakar, M.Ab-Rahman. Real-Time Monitoring In Passive Optical Access Networks Using L-Band Ase And Varied Bandwidth And Reflectivity Of fiber Bragg Gratings, Opti. Laser Tech. 2016, 79, 45-51.

https://doi.org/10.1016/j.optlastec.2015.11.008

F. M. Pereira, N Fonseca, D. S. Arantes, A Fair Scheduling Discipline for Ethernet Passive Optical Networks, Computer Networks, 2009, 53, 1859-1878.

https://doi.org/10.1016/j.comnet.2009.02.020

M De Andrade, A Buttaboni, M Tornatore, P Boffi, P Martelli, A Pattavina Optimization of Long-Reach Tdm/Wdm Passive Optical Networks, Optical Switching and Networks, 2015, 16, 36-45.

https://doi.org/10.1016/j.osn.2014.11.001

A. E. Smith, U.G.Jo. Bandwidth Allocation with A Particle Swarm Meta-Heuristic For Ethernet Passive Optical Networks, Computer Communication. 2010, 33, 526-531.

https://doi.org/10.1016/j.comcom.2009.10.019

C. L. A, W. Guo, A.N. Weisheng, H. A M. Xia. Energy-Efficient Dynamic Bandwidth Allocation For Epon Networks With Sleep Mode Onus, Optical Switching And Networking, 2015, 15, 121-133.

https://doi.org/10.1016/j.osn.2014.07.003

L. Zhang, Y. Liu, L. Guo, X. Gong. Energy-Saving Scheme Based on Downstream Packet Scheduling In Ethernet Passive Optical Networks, Optical Fiber Technology, 2013, 19, 169-178.

https://doi.org/10.1016/j.yofte.2012.12.007

C. L. A, W. Guo, A.N. Weisheng H.A, M. Xia. Programmable Bandwidth Management, in Software-Defined Epon Architecture, Optical Communication, 2013, 370, 43-48.

Y. Liu, C. Qian, B. Cao, H. Dun, Y. Shi, J. Zou, R. Lin, M. Wang. Staged Optimization Algorithms Based Mac Dynamic Bandwidth Allocation for Ofdma-Pon" Optics Communiocation, 2016, 369, 220-225.

https://doi.org/10.1016/j.optcom.2016.02.055

K. Miliotis, G.I. Papadimitriou, A.S. Pomportsis. Design Alternatives For Wavelength Routing Networks, Optics And Laser Technology. 2013, 35, 137-154.

https://doi.org/10.1016/S0030-3992(02)00165-2

P. K. Choudhury. In-Band Simultaneous Transmission Of Baseband And Broadcast Signals In Wavelength Reused Bidirectional Passive Optical Network, Optics Communication, 2015, 355, 296-300.

https://doi.org/10.1016/j.optcom.2015.06.078

T-H. Cheng, Z. Xu, X. Cheng, Y-K. Yeo, Y. J. Wen, W-D. Zhong, Y. Wang. Subcarrier Modulation In Wavelength-Reuse Wdm Passive Optical Networks Communications and Photonics Conference and Exhibition (ACP), 2010, 401-402.

https://doi.org/10.1109/ACP.2010.5682501

E. T. López, J. A. Lázaro. Bandwidth Assignment Criteria Against Rayleigh Backscattering Effect in Tdm-Pon Single-Fibre Wavelength-Reuse Networks Transparent Optical Networks (ICTON), 13th International Conference, 2011, 1-5.

M. F. Huang, N. Cvijetic, T. Wang "Wavelength-Reused Onus For Next-Generation Optical Wdm/Ofdma-Pon, Wireless Optical Communication. 2012, 20-21.

https://doi.org/10.1109/WOCC.2012.6198191

R. Goyal, R. S. Kaler. A Novel Architecture of Hybrid (Wdm/Tdm) Passive Optical Networks With Suitable Modulation Format, Optical Fiber Technology, 2012, 18, 518-522.

https://doi.org/10.1016/j.yofte.2012.08.006

Y.W. Nu, B. Kuang, T. Wang, Q. Zhang, M. Wang, Minimum Cost Maximum flow Algorithm For Upstream Bandwidth Allocation In Ofdma Passive Optical Networks, Optics Communication, 2015, 356, 103-108.

https://doi.org/10.1016/j.optcom.2015.07.067

L. Liao, L. Li, S. Wang, Dynamic Multicast Traffic Grooming In Wdm Mesh Networks, IEEE/OSA Journal of Optical Communications and Networking, 2015, 366-371,

B. Chen, J. Chen, S. He. Efficient And Fine Scheduling Algorithm For Bandwidth Allocation In Ethernet Passive Optical Networks, Quantum Electronics, 2006, 12 (4), 212-218.

Z. Zhong, N. Hua, M. Tornatore, H. Liu, C. Ma, Y. Li, X. Zheng, B. Mukherjee. Energy Efficiency and Blocking Reduction For Tidal Traffic Via Stateful Grooming In Ip-Over-Optical Networks, Opt. Commun. Network, 2015, 8(3), 175-189.

M. T. Ngo, A. Gravey. Enforcing Bandwidth Allocation And Traffic Conformance In Passive Optical Networks, Optical Access Network, 2011, 6, 1-8.

T. Orphanoudakis, H.C. Leligou, E. Kosmatos, A. Stavdas. Future Internet Infrastructure Based On The Transparent Integration Of Access And Core Optical Transport Networks, Optical Communication Network, 2009, 1, (2), 205-217. https://doi.org/10.1364/JOCN.1.00A205

I. Ramdani, J. Prat and J. Comellas, Grooming in SDH/WDM mesh networks for different traffic granularities, Proceedings of 2003 5th International Conference on Transparent Optical Networks, 2003., 95-98. https://doi.org/10.1109/ICTON.2003.1264587

K. Yiannopoulos, G. Papadimitriou, E. Varvarigos. On the Prediction of Epon Traffic Using Polynomial Fitting In Optical Network Units, Optical Communication Systems (OPTICS), 2014, 1-7.

J. Kim, S. Cho, D. Das, D Gutierrez, M Jain, C F Su, R Rabbat, T Hamada, L G Kazovsky. Optical Burst Transport: A Technology for The WDM Metro Ring Networks. Light Wave Tech., 2003, 25 (1), 93-103. https://doi.org/10.1109/JLT.2006.888483

Y. Qin, M. Ma, H. Li, J. Lin. Scheduling Transmission of Multimedia Video Traffic On Optical Access Networks, Communications Systems, ICCS 2004, 107-112.

B. Uscumlic, A. Gravey, P. Gravey. Traffic Grooming In Wdm Optical Packet Rings. Teletraffic Congress, 2009, 1-8.

N. A. M. Radzi, N. M. Din, S.K. Sadon. Traffic Modelling for Ethernet Passive Optical Network Using Matlab. 11th International Conference on Communications, IEEE, Malaysia, 2013, 1-4. https://doi.org/10.1109/MICC.2013.6805800

M. J. Spencer, M. A. Summerfield. Wrap: A Medium Access Control Protocol for Wavelength-Routed Passive Optical Networks. Light Wave Tech., 2000, 18 (12), 1657-1676. https://doi.org/10.1109/50.908683

L. Zhang, L. Liu, R. Zeng. Experimental demonstration of the OQAM- OFDM based wavelength stacked passive optical network. Opti. Comm. 2017, 394, 129-134. https://doi.org/10.1016/j.optcom.2017.03.017

P. Jin, C. Huang. Sandwich Tree: A new data centre network based on passive optical devices. Opti. Switch. Netw., 2017, 25, 133-146. https://doi.org/10.1016/j.osn.2017.05.001

C. I. Papadimitriou. Predicting and allocating bandwidth in the optical access architecture XGPON. Opti. Netw. Switch., 2017, 6, 1-16.


Refbacks

  • There are currently no refbacks.