Certain results on entire functions defined by bicomplex Dirichlet series

Government Degree College Raza Nagar Swar, Rampur, Uttar Pradesh -244924, INDIA
Received on: 10-JUNE-2018, Accepted and Published on:20-SEPT-2018
ABSTRACT

$$
\begin{aligned}
& \text { In this work, we have introduced and studied the Bicomplex version of Complex Dirichlet Series } \mathrm{f}(\mathrm{~s})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{e}^{-\mathrm{ns}} \text {. We } \\
& \text { have derived condition for which the sum function of the Bicomplex Dirichlet Series } \mathrm{f}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi} \text { represents an }
\end{aligned}
$$ entire function. The Entireness of sum and Hadamard product of two Entire Bicomplex Dirichlet Series are also discussed..

Keywords: Dirichlet Series, Entire Dirichlet Series, Riemann Zeta Function, Hadamard Product

INTRODUCTION

Throughout this paper, the set of Bicomplex numbers is denoted by C_{2} and the sets of complex and real numbers are denoted by C_{1} and C_{0}, respectively. For details of the theory of bicomplex numbers. ${ }^{1-3}$

The set of Bicomplex Numbers defined as:

$$
\begin{gathered}
C_{2}=\left\{x_{1}+i_{1} x_{2}+i_{2} x_{3}+i_{1} i_{2} x_{4}: x_{1}, x_{2}, x_{3}, x_{4} \in C_{0}\right. \\
\left.i_{1} \neq i_{2} \text { and } i_{1}^{2}=i_{2}^{2}=-1, i_{1} i_{2}=i_{2} i_{1}\right\}
\end{gathered}
$$

We shall use the notations $C\left(i_{1}\right)$ and $C\left(i_{2}\right)$ for the following sets:

$$
C\left(i_{1}\right)=\left\{u+i_{1} v: u, v \in C_{0}\right\}
$$

$\mathrm{C}\left(\mathrm{i}_{2}\right)=\left\{\alpha+\mathrm{i}_{2} \beta: \alpha, \beta \in \mathrm{C}_{0}\right\}$

1.1 IDEMPOTENT ELEMENTS:

Besides 0 and 1, there are exactly two non - trivial

Dr. Jogendra Kumar, Assistant Professor, Government Degree College Raza Nagar Swar, Rampur, Uttar Pradesh -244924, INDIA
Email: jogendra.ibs@gmail.com
Cite as: Int. Res. $A d v ., 2018,5(2), 46-51$.
©IS Publications ISSN 2456-334X
http://pubs.iscience.in/ira
idempotent elements in C_{2}, denoted as e_{1} and e_{2} and defined as $\mathrm{e}_{1}=\frac{1+\mathrm{i}_{1} \mathrm{i}_{2}}{2}$ and $\mathrm{e}_{2}=\frac{1-\mathrm{i}_{1} \mathrm{i}_{2}}{2}$

Note that $\mathrm{e}_{1}+\mathrm{e}_{2}=1$ and $\mathrm{e}_{1} \mathrm{e}_{2}=\mathrm{e}_{2} \mathrm{e}_{1}=0$.

1.2 Cartesianidempotent set:

Cartesian idempotent set X determined by X_{1} and X_{2} is denoted as $\mathrm{X}_{1} \times{ }_{\mathrm{e}} \mathrm{X}_{2}$ and is defined as

$$
\begin{aligned}
& \mathrm{X}= \\
& \mathrm{X}_{1} \times_{\mathrm{e}} \mathrm{X}_{2}=\left\{\xi \in \mathrm{C}_{2}: \xi={ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2},\left({ }^{1} \xi,{ }^{2} \xi\right) \in \mathrm{X}_{1} \times \mathrm{X}_{2}\right\} \\
& \mathrm{C}_{2}=\mathrm{C}\left(\mathrm{i}_{1}\right) \times{ }_{\mathrm{e}} \mathrm{C}\left(\mathrm{i}_{1}\right)=\mathrm{C}\left(\mathrm{i}_{1}\right) \mathrm{e}_{1}+\mathrm{C}\left(\mathrm{i}_{1}\right) \mathrm{e}_{2} \\
& =\left\{\xi \in \mathrm{C}_{2}: \xi={ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2},\left({ }^{1} \xi,{ }^{2} \xi\right) \in \mathrm{C}\left(\mathrm{i}_{1}\right) \times \mathrm{C}\left(\mathrm{i}_{1}\right)\right\} \\
& \mathrm{C}_{2}=\mathrm{C}\left(\mathrm{i}_{2}\right) \times{ }_{\mathrm{e}} \mathrm{C}\left(\mathrm{i}_{2}\right)=\mathrm{C}\left(\mathrm{i}_{2}\right) \mathrm{e}_{1}+\mathrm{C}\left(\mathrm{i}_{2}\right) \mathrm{e}_{2} \\
& =\left\{\xi \in \mathrm{C}_{2}: \xi=\xi_{1} \mathrm{e}_{1}+\xi_{2} \mathrm{e}_{2},\left(\xi_{1}, \xi_{2}\right) \in \mathrm{C}\left(\mathrm{i}_{2}\right) \times \mathrm{C}\left(\mathrm{i}_{2}\right)\right\}
\end{aligned}
$$

1.3 Idempotent Representation of Bicomplex Numbers

(I) $\mathrm{C}\left(\mathrm{i}_{1}\right)$-idempotent representation of Bicomplex Number is given by

$$
\begin{aligned}
\xi=\mathrm{z}_{1}+\mathrm{i}_{2} \mathrm{z}_{2} & =\left(\mathrm{z}_{1}-\mathrm{i}_{1} \mathrm{z}_{2}\right) \mathrm{e}_{1}+\left(\mathrm{z}_{1}+\mathrm{i}_{1} \mathrm{z}_{2}\right) \mathrm{e}_{2} \\
& ={ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2}
\end{aligned}
$$

(II) $\mathrm{C}\left(\mathrm{i}_{2}\right)$-idempotent representation of Bicomplex Number is given by

$$
\begin{aligned}
& \xi=\left(x_{1}+i_{2} x_{3}\right)+i_{1}\left(x_{2}+i_{2} x_{4}\right)=w_{1}+i_{1} w_{2} \\
& =\left(w_{1}-i_{2} w_{2}\right) e_{1}+\left(w_{1}+i_{2} w_{2}\right) e_{2}=\xi_{1} e_{1}+\xi_{2} e_{2}
\end{aligned}
$$

Note 1.1: Out of the two idempotent representation, we use $\mathrm{C}\left(\mathrm{i}_{1}\right)$-idempotent representation. All the results also proved with the help of $\mathrm{C}\left(\mathrm{i}_{2}\right)$-idempotent representation technique.

The norm in C_{2} is defined as

$$
\begin{aligned}
\|\xi\| & =\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right\}^{1 / 2}=\left[\frac{|1 \xi|^{2}+|2 \xi|^{2}}{2}\right]^{1 / 2} \\
& =\left[x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right]^{1 / 2}
\end{aligned}
$$

C_{2} becomes a modified Banach algebra, in the sense that $\|\xi . \eta\| \leq \sqrt{2}\|\xi\|\|\eta\|$

1.4 Complex Dirichlet series: ${ }^{46}$

A Dirichlet series is a series of the form $\mathrm{f}(\mathrm{s})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}} s}$ where $\left\{\lambda_{\mathrm{n}}\right\}$ is a strictly monotonically increasing and unbounded sequence of positive real numbers, and $\mathrm{s}=\sigma+\mathrm{it}$ is a complex variable.

When the sequence $\left\{\lambda_{n}\right\}$ of exponent is to be emphasized, such a series is called a complex Dirichlet series of type $\boldsymbol{\lambda}_{\mathbf{n}} \cdot{ }^{4}$

A Dirichlet series of the type n is a power series in e^{-s} is given by $f(s)=\sum_{n=1}^{\infty} a_{n} e^{-n s}=\sum_{n=1}^{\infty} a_{n}\left(e^{-s}\right)^{n}$
A Dirichlet series of type $\log \mathbf{n}$ is the Generalized
Riemann Zeta function is given by $\mathrm{f}(\mathrm{s})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{n}^{-\mathrm{s}}$
Abscissae of convergence and absolute convergence:
To every Dirichlet series, there exists a number σ_{0} such that the Dirichlet series $f(s)=\sum_{n=1}^{\infty} a_{n} e^{-n s}$ converges for $\operatorname{Re}(\mathrm{s})>\sigma_{0}$ and diverges for $\operatorname{Re}(\mathrm{s})<\sigma_{0}$. The number σ_{0} is called the abscissa of convergence of the series, and the line $\operatorname{Re}(s)=\sigma_{0}$ is called the line of convergence.

To every Dirichlet series, there exists a number $\bar{\sigma}$ such that the Dirichlet series $\mathrm{f}(\mathrm{s})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{e}^{-\mathrm{ns}}$ is absolutely convergent for $\operatorname{Re}(s)>\bar{\sigma}$, and not absolutely convergent for $\operatorname{Re}(s)<\bar{\sigma}$ (this region comprise the region $\operatorname{Re}(s)<\sigma_{0}$ of divergence, the region $\sigma_{0}<\operatorname{Re}(\mathrm{s})<\bar{\sigma}$ of conditional convergence and the line $\left.\operatorname{Re}(s)=\sigma_{0}\right)$.
The quantity $\bar{\sigma}$ is called the abscissa of absolute convergence of the series $f(s)=\sum_{n=1}^{\infty} a_{n} e^{-n s}$ and the line $\operatorname{Re}(s)=\bar{\sigma}$ is called the line of absolute convergence.

1.5 Entirenessof Complex Dirichlet Series:

Theorem 1.1:4

For the complex Dirichlet Series $\sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{s}}$
If $\overline{\lim } \frac{\mathrm{n}}{\lambda_{\mathrm{n}}}<\infty$, Then $\sigma_{0}=\bar{\sigma}=\overline{\lim } \frac{\log \left|\mathrm{a}_{\mathrm{n}}\right|}{\lambda_{\mathrm{n}}}$.
Corollary 1.1: For a Dirichlet Series $f(s)=\sum_{n=1}^{\infty} a_{n} e^{-n s}$
$\sigma_{0}=\bar{\sigma}=\varlimsup \frac{\log \left|\mathrm{a}_{\mathrm{n}}\right|}{\mathrm{n}}$
Proof: $\lambda_{\mathrm{n}}=\mathrm{n} \Rightarrow \overline{\lim } \frac{\mathrm{n}}{\lambda_{\mathrm{n}}}=\overline{\lim } \frac{\mathrm{n}}{\mathrm{n}}=1<\infty$
Hence, $\sigma_{0}=\bar{\sigma}=\overline{\lim } \frac{\log \left|a_{n}\right|}{n}$
Corollary 1.2: The Complex Dirichlet Series
$f(s)=\sum_{n=1}^{\infty} a_{n} e^{-n s}$ represents an Entire function iff

$$
\left|\mathrm{a}_{\mathrm{n}}\right|^{1 / \mathrm{n}} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

Proof:

$$
\begin{aligned}
& \text { For entireness of } \mathrm{f}(\mathrm{~s})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{e}^{-\mathrm{ns}} \\
& \lim \frac{\log \left|\mathrm{a}_{\mathrm{n}}\right|}{\mathrm{n}}=-\infty \Leftrightarrow \lim \frac{\log \left|\mathrm{a}_{\mathrm{n}}\right|}{\mathrm{n}}=-\infty \\
& \Leftrightarrow \lim \log \left|\mathrm{a}_{\mathrm{n}}\right|^{1 / n}=-\infty \Leftrightarrow \lim \left|\mathrm{a}_{\mathrm{n}}\right|^{1 / n}=0 \\
& \Leftrightarrow\left|\mathrm{a}_{\mathrm{n}}\right|^{1 / n} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
\end{aligned}
$$

Hence $\mathrm{f}(\mathrm{s})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{e}^{-\mathrm{ns}}$ represents an Entire function if $\left|\mathrm{a}_{\mathrm{n}}\right|^{1 / \mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.

2. BICOMPLEX DIRICHLET SERIES:

In this paper we discuss a Bicomplex Dirichlet Series of type n , which is a Bicomplex Power Series in $\mathrm{e}^{-\xi}$

$$
\mathrm{f}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}=\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}}\left(\mathrm{e}^{-\xi}\right)^{\mathrm{n}}
$$

where $\left\{\alpha_{n}\right\}$ is a sequence of bicomplex numbers and ξ is a bicomplex variable.

Note that,
$\sum_{n=1}^{\infty} \alpha_{n} e^{-n \xi}=\left[\sum_{n=1}^{\infty}{ }^{1} \alpha_{n} e^{-n{ }^{1} \xi}\right] e_{1}+\left[\sum_{n=1}^{\infty}{ }^{2} \alpha_{n} e^{-n^{2} \xi}\right] e_{2}$
$\Rightarrow \mathrm{f}(\xi)={ }^{1} \mathrm{f}\left({ }^{1} \xi\right) \mathrm{e}_{1}+{ }^{2} \mathrm{f}\left({ }^{2} \xi\right) \mathrm{e}_{2}$
Where, $\mathrm{f}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ is a Bicomplex Dirichlet
Series and $\quad{ }^{1} f\left({ }^{1} \xi\right)=\sum_{\mathrm{n}=1}^{\infty}{ }^{1} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n}{ }^{1} \xi}$, ${ }^{2} f\left({ }^{2} \xi\right)=\sum_{\mathrm{n}=1}^{\infty}{ }^{2} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n}^{2} \xi}$ are Complex Dirichlet Series.
Throughout, We denote the abscissae of convergence of the Complex Dirichlet series $\sum_{n=1}^{\infty}{ }^{1} \alpha_{n} e^{-n^{1} \xi}$ and $\sum_{n=1}^{\infty}{ }^{2} \alpha_{n} e^{-n^{2} \xi}$ by σ_{1} and σ_{2} and abscissae of their absolute convergence by $\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$, respectively.

Theorem 2.1:

For the Bicomplex dirichlet Series $f(\xi)=\sum_{n=1}^{\infty} \alpha_{n} e^{-n \xi}$
$\sigma_{1}=\bar{\sigma}_{1}=\sigma_{2}=\bar{\sigma}_{2}=\varlimsup \frac{\log \left\|\alpha_{n}\right\|}{n}$
if, $\alpha_{1 n} \alpha_{4 n}=\alpha_{2 n} \alpha_{3 n}$
Proof:

$$
\begin{gathered}
\alpha_{n}=\alpha_{1 n}+i_{1} \alpha_{2 n}+i_{2} \alpha_{3 n}+i_{1} i_{2} \alpha_{4 n} \\
\alpha_{n}={ }^{1} \alpha_{n} e_{1}+{ }^{2} \alpha_{n} e_{2}
\end{gathered}
$$

Where, ${ }^{1} \alpha_{\mathrm{n}}=\left(\alpha_{1 \mathrm{n}}+\alpha_{4 \mathrm{n}}\right)+\mathrm{i}_{1}\left(\alpha_{2 \mathrm{n}}-\alpha_{3 \mathrm{n}}\right) \quad$ and ${ }^{2} \alpha_{n}=\left(\alpha_{1 n}-\alpha_{4 n}\right)+i_{1}\left(\alpha_{2 n}+\alpha_{3 n}\right)$
$\left|{ }^{1} \alpha_{\mathrm{n}}\right|=\left.\right|^{2} \alpha_{\mathrm{n}} \mid=\sqrt{\left(\alpha_{1 \mathrm{n}}\right)^{2}+\left(\alpha_{2 \mathrm{n}}\right)^{2}+\left(\alpha_{3 \mathrm{n}}\right)^{2}+\left(\alpha_{4 \mathrm{n}}\right)^{2}}$
$\because \alpha_{1 n} \alpha_{4 n}=\alpha_{2 n} \alpha_{3 n}$
Also
$\left\|\alpha_{n}\right\|=\sqrt{\left(\alpha_{1 n}\right)^{2}+\left(\alpha_{2 n}\right)^{2}+\left(\alpha_{3 n}\right)^{2}+\left(\alpha_{4 n}\right)^{2}}$
Hence, $\left\|\alpha_{n}\right\|=\left|{ }^{1} \alpha_{n}\right|=\left|{ }^{2} \alpha_{n}\right|$ iff $\alpha_{1 n} \alpha_{4 n}=\alpha_{2 n} \alpha_{3 n}$
As, $\quad \sigma_{1}=\bar{\sigma}_{1}=\varlimsup \frac{\log \left|{ }^{1} \alpha_{\mathrm{n}}\right|}{\mathrm{n}}$ and
$\sigma_{2}=\bar{\sigma}_{2}=\varlimsup \overline{\lim } \frac{\log \left|{ }^{2} \alpha_{\mathrm{n}}\right|}{\mathrm{n}}$
[cf. Cor. 1.1]
Hence, $\sigma_{1}=\bar{\sigma}_{1}=\sigma_{2}=\bar{\sigma}_{2}=\varlimsup \frac{\log \left\|\alpha_{n}\right\|}{n}$
Theorem 2.2:
The Bicomplex Dirichlet series $\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ and the k^{th} derivative defined by $\sum_{n=1}^{\infty}(-n)^{k} \alpha_{n} e^{-n \xi}$ have the same region of convergence.

Proof:

$$
\begin{gathered}
\sigma_{1}=\bar{\sigma}_{1}=\varlimsup \frac{\log \left|{ }^{1} \alpha_{\mathrm{n}}\right|}{\mathrm{n}} \\
\sigma_{2}=\bar{\sigma}_{2}=\varlimsup \frac{\left.\log \right|^{2} \alpha_{\mathrm{n}} \mid}{\mathrm{n}} \frac{1}{}
\end{gathered}
$$

and

Let ρ_{1}, ρ_{2} and $\bar{\rho}_{1}, \bar{\rho}_{2}$ are the associated abscissae of convergence and absolute convergence of the Bicomplex Dirichlet series $\sum_{n=1}^{\infty}(-n)^{k} \alpha_{n} e^{-n \xi}$.

The,

$$
\begin{aligned}
& \rho_{1}=\bar{\rho}_{1}=\overline{\lim } \frac{\log \left|(-\mathrm{n})^{\mathrm{k} 1} \alpha_{\mathrm{n}}\right|}{\mathrm{n}} \\
= & \varlimsup \frac{\log \left|(-\mathrm{n})^{\mathrm{k}}\right|+\left.\log \right|^{1} \alpha_{\mathrm{n}} \mid}{\mathrm{n}}
\end{aligned}
$$

$$
=\varlimsup \frac{\mathrm{k} \log \mathrm{n}+\log \left|{ }^{1} \alpha_{\mathrm{n}}\right|}{\mathrm{n}}
$$

$$
=\mathrm{k} \lim \frac{\log n}{n}+\overline{\lim } \frac{\log \left|{ }^{1} \alpha_{n}\right|}{n}
$$

$=k \lim \frac{\log n}{n}+\varlimsup \frac{\log \left|{ }^{1} \alpha_{n}\right|}{n}=0+\varlimsup \lim \frac{\log \left|{ }^{1} \alpha_{n}\right|}{n}$
$=\varlimsup \frac{\log \left|{ }^{1} \alpha_{n}\right|}{n}$
$=\sigma_{1}$
Similarly,
$\rho_{2}=\bar{\rho}_{2}=\varlimsup \frac{\log \left|(-\mathrm{n})^{\mathrm{k}}{ }^{2} \alpha_{\mathrm{n}}\right|}{\mathrm{n}}=\varlimsup \overline{\lim } \frac{\left.\log \right|^{2} \alpha_{\mathrm{n}} \mid}{\mathrm{n}}$
$=\sigma_{2}$.

THEOREM2.3:

The Bicomplex Dirichlet series $\sum_{n=1}^{\infty} \alpha_{n} e^{-n \xi}$ and the Bicomplex Dirichlet series $\sum_{n=1}^{\infty} \frac{\alpha_{n}}{(-n)^{k}} e^{-n \xi}$ obtained after k-times term-by-term integration of $\sum_{n=1}^{\infty} \alpha_{n} e^{-n \xi}$ have the same region of convergence.

Proof:

$$
\begin{gathered}
\sigma_{1}=\bar{\sigma}_{1}=\overline{\lim } \frac{\log \left|{ }^{1} \alpha_{n}\right|}{n} \\
\sigma_{2}=\bar{\sigma}_{2}=\overline{\lim } \frac{\left.\log \right|^{2} \alpha_{n} \mid}{n}
\end{gathered}
$$

Let ρ_{1}, ρ_{2} and $\bar{\rho}_{1}, \bar{\rho}_{2}$ are the associated abscissae of convergence and absolute convergence of the Bicomplex Dirichlet series $\sum_{n=1}^{\infty} \frac{\alpha_{n}}{(-n)^{k}} e^{-n \xi}$.

Then, $\rho_{1}=\bar{\rho}_{1}=\overline{\lim } \frac{\log \left|\frac{{ }^{1} \alpha_{n}}{(-n)^{k}}\right|}{n}$
$=\varlimsup \frac{\log \left|{ }^{1} \alpha_{n}\right|}{n}-k \lim \frac{\log n}{n}$
$=\varlimsup \frac{\left.\log \right|^{1} \alpha_{n} \mid}{n}-k \lim \frac{\log n}{n}=\varlimsup \varlimsup_{n} \frac{\left.\log \right|^{1} \alpha_{n} \mid}{n}-0$
$=\overline{\lim } \frac{\log \left|1 \alpha_{n}\right|}{n}$
$=\sigma_{1}$
Similarly,
$\rho_{2}=\bar{\rho}_{2}=\overline{\lim } \frac{\log \left|\frac{{ }^{2} \alpha_{n}}{(-n)^{k}}\right|}{n}=\overline{\lim } \frac{\left.\log \right|^{2} \alpha_{n} \mid}{n}=\sigma_{2}$.

ENTIRE BICOMPLEX DIRICHLET SERIES

DEFINITION2.1:

The Bicomplex Dirichlet series $\mathrm{f}(\xi)=\sum \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ is said to be an entire Bicomplex Dirichlet Series if it is convergent in the entire C_{2}-space.

THEOREM 2.4:

$\left\|\alpha_{n}\right\|^{\frac{1}{n}} \rightarrow 0$ as $n \rightarrow \infty$ if and only if $\left.\left.\right|^{1} \alpha_{n}\right|^{\frac{1}{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty \quad$ and $\quad\left|{ }^{2} \alpha_{\mathrm{n}}\right|^{\frac{1}{\mathrm{n}}} \rightarrow 0 \quad$ as $\quad \mathrm{n} \rightarrow \infty$, where $\alpha_{\mathrm{n}}={ }^{1} \alpha_{\mathrm{n}} \mathrm{e}_{1}+{ }^{2} \alpha_{\mathrm{n}} \mathrm{e}_{2}$.

Proof:

$$
\text { Let }\left\|\alpha_{n}\right\|^{\frac{1}{\mathrm{n}}} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

Given $\quad \varepsilon>0 \quad \exists \mathrm{~m} \in \mathrm{~N}, \quad$ such that $\left\|\alpha_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}}<\varepsilon$ $\forall \mathrm{n} \geq \mathrm{m}$

$$
\begin{aligned}
& \text { Now } \\
& \forall \mathrm{n} \geq \mathrm{m}, \\
& \left\|\alpha_{n}\right\|<\varepsilon^{n} \Rightarrow \\
& {\left[\frac{\left|1 \alpha_{n}\right|^{2}+\left|{ }^{2} \alpha_{n}\right|^{2}}{2}\right]^{\frac{1}{2}}<\varepsilon^{n}} \\
& \Rightarrow\left|{ }^{1} \alpha_{n}\right|^{2}+\left|{ }^{2} \alpha_{n}\right|^{2}<2 \varepsilon^{2 n} \Rightarrow\left|{ }^{1} \alpha_{n}\right|^{2}<2 \varepsilon^{2 n} \text { and } \\
& \left|{ }^{2} \alpha_{n}\right|^{2}<2 \varepsilon^{2 n} \Rightarrow\left|{ }^{1} \alpha_{n}\right|^{\frac{1}{n}} \rightarrow 0 \text { and }\left|{ }^{2} \alpha_{n}\right|^{\frac{1}{n}} \rightarrow 0 \\
& \text { Conversely let } \quad\left|{ }^{1} \alpha_{n}\right|^{\frac{1}{n}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \quad \text { and } \\
& \left|{ }^{2} \alpha_{\mathrm{n}}\right|^{\frac{1}{\mathrm{n}}} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \\
& \text { i.e. Given } \varepsilon>0 \exists \mathrm{~m}_{1}, \mathrm{~m}_{2} \in \mathrm{~N} \\
& \text { Such that }\left|{ }^{1} \alpha_{n}\right|^{\frac{1}{n}}<\varepsilon \quad \forall \mathrm{n} \geq \mathrm{m}_{1} \text { and }\left.\left.\right|^{2} \alpha_{\mathrm{n}}\right|^{\frac{1}{\mathrm{n}}}<\varepsilon \\
& \forall \mathrm{n} \geq \mathrm{m}_{2}
\end{aligned}
$$

Let $m=\max \left(m_{1}, m_{2}\right)$
Then $\forall \mathrm{n} \geq \mathrm{m},\left|{ }^{1} \alpha_{\mathrm{n}}\right|^{\frac{1}{\mathrm{n}}}<\varepsilon$ and $\left|{ }^{2} \alpha_{\mathrm{n}}\right|^{\frac{1}{\mathrm{n}}}<\varepsilon$
$\left\|\alpha_{\mathrm{n}}\right\|=\left[\frac{\left|{ }^{1} \alpha_{\mathrm{n}}\right|^{2}+\left|{ }^{2} \alpha_{\mathrm{n}}\right|^{2}}{2}\right]^{\frac{1}{2}} \Rightarrow$
$2\left\|\alpha_{n}\right\|^{2}=\left|{ }^{1} \alpha_{n}\right|^{2}+\left|{ }^{2} \alpha_{n}\right|^{2} \Rightarrow$
$2\left\|\alpha_{n}\right\|^{2}<\varepsilon^{2 n}+\varepsilon^{2 n}=2 \varepsilon^{2 n}$

$$
\Rightarrow\left\|\alpha_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

Theorem 2.5:

The Bicomplex Dirichlet series $f(\xi)=\sum \alpha_{n} e^{-n \xi}$ is an entire Bicomplex Dirichlet series if and only if both ${ }^{1} \mathrm{f}\left({ }^{1} \xi\right)=\sum^{1} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n}{ }^{1} \xi}$ and ${ }^{2} \mathrm{f}(2 \xi)=\sum{ }^{2} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n}^{2} \xi}$ are entire Complex Dirichlet series.

Corollary 2.1: The Bicomplex Dirichlet series $\mathrm{f}(\xi)=\sum \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ is an entire Bicomplex Dirichlet series if and only if $\bar{\sigma}_{1}=-\infty$ and $\bar{\sigma}_{2}=-\infty$.

Corollary 2.2: The Bicomplex Dirichlet series $\mathrm{f}(\xi)=\sum \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ is an entire Bicomplex Dirichlet series if and only if $\left\|\left\|^{1} \alpha_{n}\right\|^{\frac{1}{n}} \rightarrow 0 \text { and }\right\|^{2} \alpha_{n} \|^{\frac{1}{n}} \rightarrow 0$.

Corollary 2.3: The Bicomplex Dirichlet series $\mathrm{f}(\xi)=\sum \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ is an entire Bicomplex Dirichlet series iff $\left\|\alpha_{n}\right\|^{\frac{1}{n}} \rightarrow 0$.

Theorem 2.6:

Let $\mathrm{h}(\xi)=\sum_{\mathrm{n}=1}^{\infty}\left(\alpha_{\mathrm{n}} \beta_{\mathrm{n}}\right) \mathrm{e}^{-\mathrm{n} \xi}$ be the Hadamard product of $f(\xi)=\sum_{n=1}^{\infty} \alpha_{n} e^{-n \xi}$ and $g(\xi)=\sum_{n=1}^{\infty} \beta_{n} e^{-n \xi}$. If f and g are entire Bicomplex Dirichlet series, then h is also an entire Bicomplex Dirichlet series.

Proof:
$\mathrm{f}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ and $\mathrm{g}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \beta_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ are two Entire Bicomplex Dirichlet Series
$\Rightarrow\left\|\alpha_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ and $\left\|\beta_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
i.e. given $\varepsilon>0 \exists \mathrm{~m}_{1}, \mathrm{~m}_{2} \in \mathrm{~N}$

Such that $\left\|\alpha_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}}<\varepsilon \quad \forall \mathrm{n} \geq \mathrm{m}_{1}$ and $\left\|\beta_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}}<\varepsilon$ $\forall \mathrm{n} \geq \mathrm{m}_{2}$
Let $\mathrm{m}=\max \left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$
Now $\forall \mathrm{n} \geq \mathrm{m},\left\|\alpha_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}}<\varepsilon$ and $\left\|\beta_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}}<\varepsilon$
Now, $\quad\left\|\alpha_{n} \beta_{n}\right\| \leq \sqrt{2}\left\|\alpha_{n}\right\|\left\|\beta_{\mathrm{n}}\right\| \quad \Rightarrow$
$\left\|\alpha_{\mathrm{n}} \beta_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}} \leq[\sqrt{2}]^{\frac{1}{\mathrm{n}}}\left\|\alpha_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}}\left\|\beta_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}}<(2)^{\frac{1}{2 \mathrm{n}}}(\varepsilon)(\varepsilon)$
$=(2)^{\frac{1}{2 n}} \varepsilon^{2}$
$\Rightarrow\left\|\alpha_{\mathrm{n}} \beta_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}}<(2)^{\frac{1}{2 n}} \varepsilon^{2} \Rightarrow\left\|\alpha_{\mathrm{n}} \beta_{\mathrm{n}}\right\|^{\frac{1}{\mathrm{n}}} \rightarrow 0$ as
$\mathrm{n} \rightarrow \infty$
Hence $\mathrm{h}(\xi)=\sum_{\mathrm{n}=1}^{\infty}\left(\alpha_{\mathrm{n}} \beta_{\mathrm{n}}\right) \mathrm{e}^{-\mathrm{n} \xi}$ is an entire Bicomplex Dirichlet Series.

Theorem 2.7:

If $\mathrm{f}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ and $\mathrm{g}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \beta_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ be two entire Bicomplex Dirichlet series, then the series $\sum_{n=1}^{\infty}\left(\alpha_{n} \pm \beta_{n}\right) e^{-n \xi}$ is also an entire Bicomplex Dirichlet series.

Theorem 2.8:
If $\sum_{n=1}^{\infty} \alpha_{n} \mathrm{e}^{-\mathrm{n} \xi}$ is an Entire Bicomplex Dirichlet Series, then $k^{\text {th }}$ derivative defined by $\sum_{n=1}^{\infty}(-n)^{k} \alpha_{n} e^{-n \xi}$ is also an Entire Bicomplex Dirichlet Series.

Proof:
$\mathrm{f}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ is an Entire Bicomplex Dirichlet Series

$$
\begin{aligned}
& \text { i.e. }\left\|\alpha_{\mathrm{n}}\right\|^{\frac{1}{n}} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \\
& \text { Now, }\left\|(-\mathrm{n})^{\mathrm{k}} \alpha_{\mathrm{n}}\right\|^{\frac{1}{n}}=(\mathrm{n})^{\frac{\mathrm{k}}{\mathrm{n}}}\left\|\alpha_{\mathrm{n}}\right\|^{\frac{1}{n}} \quad \Rightarrow \\
& \left\|(-\mathrm{n})^{\mathrm{k}} \alpha_{\mathrm{n}}\right\|^{\frac{1}{n}} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \quad \because(\mathrm{n})^{\frac{k}{n}} \rightarrow 0 \text { as } \\
& \mathrm{n} \rightarrow \infty
\end{aligned}
$$

Theorem 2.9:

If the Bicomplex Dirichlet series $\sum_{n=1}^{\infty} \alpha_{n} \mathrm{e}^{-\mathrm{n} \xi}$ is an entire Bicomplex Dirichlet series then the Bicomplex Dirichlet series $\sum_{\mathrm{n}=1}^{\infty} \frac{\alpha_{\mathrm{n}}}{(-\mathrm{n})^{\mathrm{k}}} \mathrm{e}^{-\mathrm{n} \xi}$ obtained after k-times term-by-term integration of $\sum_{n=1}^{\infty} \alpha_{n} e^{-n \xi}$ is also an entire Bicomplex Dirichlet series.

Proof:
Let $\mathrm{f}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \xi}$ is an entire Bicomplex Dirichlet series i.e. $\left\|\alpha_{n}\right\|^{\frac{1}{n}} \rightarrow 0$ as $n \rightarrow \infty$

Now, $\left\|\frac{\alpha_{n}}{(-n)^{k}}\right\|^{\frac{1}{n}}=\frac{\left\|\alpha_{n}\right\|^{\frac{1}{n}}}{\left\|(-n)^{k}\right\|^{\frac{1}{n}}}=\frac{\left\|\alpha_{n}\right\|^{\frac{1}{n}}}{(n)^{\frac{k}{n}}} \Rightarrow$ $\left\|\frac{\alpha_{n}}{(-n)^{k}}\right\|^{\frac{1}{n}} \rightarrow 0$ as $n \rightarrow \infty \quad \because(n)^{\frac{k}{n}} \rightarrow 0$ as $n \rightarrow \infty$ $\Rightarrow \sum_{\mathrm{n}=1}^{\infty} \frac{\alpha_{\mathrm{n}}}{(-\mathrm{n})^{\mathrm{k}}} \mathrm{e}^{-\mathrm{n} \xi}$ is an entire Bicomplex Dirichlet series.

ACKNOWLEDGMENTS

I am heartily thankful to Mr. Sukhdev Singh, Assistant Professor-Mathematics, Lovely Professional University, Punjab and Dr. Mamta Nigam, Assistant ProfessorMathematics,University of Delhi for their encouragement and support during the prepration of this paper.

REFERENCESAND NOTES

1. M.E. Luna-Elizarrarás, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers, Springer International Publishing, (2015)
2. G. B. Price, An int. to multicomplex space and Functions, Marcel Dekker (1991).
3. Rajiv K. Srivastava,Certain Topological aspects of Bicomplex Space, Bull. Pure and Appl. Math., 2(2),(2008), 222-234.
4. G. H. Hardy and M. Riesz, The General Theory of Dirichlet Series, Cambridge Univ. Press (1915).
5. E. C. Titchmarsh, The Theory of functions, Oxford University press (1960).
6. S. Mandelbrojt, Dirichlet series: Principles and Methods, Dordrecht Holland (1969).
