Certain results on entire functions defined by bicomplex Dirichlet series

Jogendra Kumar

Government Degree College Raza Nagar Swar, Rampur, Uttar Pradesh –244924, INDIA

Received on: 10-JUNE-2018, Accepted and Published on:20-SEPT-2018

ABSTRACT

In this work, we have introduced and studied the Bicomplex version of Complex Dirichlet Series \(f(s) = \sum_{n=1}^{\infty} a_n e^{-ns} \). We have derived condition for which the sum function of the Bicomplex Dirichlet Series \(f(\xi) = \sum_{n=1}^{\infty} \alpha_n e^{-n\xi} \) represents an entire function. The Entireness of sum and Hadamard product of two Entire Bicomplex Dirichlet Series are also discussed.

Keywords: Dirichlet Series, Entire Dirichlet Series, Riemann Zeta Function, Hadamard Product

INTRODUCTION

Throughout this paper, the set of Bicomplex numbers is denoted by \(\mathbb{C}_2 \) and the sets of complex and real numbers are denoted by \(\mathbb{C}_1 \) and \(\mathbb{C}_0 \), respectively. For details of the theory of bicomplex numbers,\(^{1,2}\)

The set of Bicomplex Numbers defined as:
\[
\mathbb{C}_2 = \{ x_1 + i_1 x_2 + i_2 x_3 + i_1 i_2 x_4 : x_1, x_2, x_3, x_4 \in \mathbb{C}_0, \\
i_1 \neq i_2 \text{ and } i_2^2 = -1, \ i_1 i_2 = i_2 i_1 \}
\]

We shall use the notations \(C(i_1) \) and \(C(i_2) \) for the following sets:
\[
C(i_1) = \{ u + i_1 v : u, v \in \mathbb{C}_0 \} \\
C(i_2) = \{ \alpha + i_2 \beta : \alpha, \beta \in \mathbb{C}_0 \}
\]

1.1 IDEMPOTENT ELEMENTS:

Besides 0 and 1, there are exactly two non – trivial idempotent elements in \(\mathbb{C}_2 \), denoted as \(e_1 \) and \(e_2 \) and defined as \(e_1 = \frac{1+i_1 i_2}{2} \) and \(e_2 = \frac{1-i_1 i_2}{2} \).

Note that \(e_1 + e_2 = 1 \) and \(e_1 e_2 = e_2 e_1 = 0 \).

1.2 CARTESIAN IDEMPOTENT SET:

Cartesian idempotent set \(X \) determined by \(X_1 \) and \(X_2 \) is denoted as \(X_1 \times_{e} X_2 \) and is defined as:
\[
X_1 \times_{e} X_2 = \{ (\xi, \eta) : \xi = \xi_1 e_1 + \xi_2 e_2, (\eta_1, \eta_2) \in X_1 \times X_2 \}
\]

\[
C_2 = C(i_1) \times_{e} C(i_2) = C(i_1) e_1 + C(i_2) e_2 \\
= \{ (\xi, \eta) : \xi = \xi_1 e_1 + \xi_2 e_2, (\eta_1, \eta_2) \in C(i_1) \times C(i_2) \}
\]

\[
C_2 = C(i_1) \times_{e} C(i_2) = C(i_1) e_1 + C(i_2) e_2 \\
= \{ (\xi, \eta) : \xi = \xi_1 e_1 + \xi_2 e_2, (\eta_1, \eta_2) \in C(i_1) \times C(i_2) \}
\]

1.3 IDEMPOTENT REPRESENTATION OF BICOMPLEX NUMBERS

(1) \(C(i_1) \)-idempotent representation of Bicomplex Number is given by
\[
\xi = z_1 + i_1 z_2 = (z_1 - i_1 z_2) e_1 + (z_1 + i_1 z_2) e_2 \\
= i_1 \xi e_1 + \xi_2 e_2
\]
(II) C(i₂) - idempotent representation of Bicomplex Number is given by
\[\xi = (x_1 + i_2 x_3) + i_1 (x_2 + i_2 x_4) = w_1 + i_1 w_2 \]
\[= (w_1 - i_2 w_2) e_1 + (w_1 + i_2 w_2) e_2 = \xi_1 e_1 + \xi_2 e_2 \]

Note 1.1: Out of the two idempotent representation, we use C(i₁) - idempotent representation. All the results also proved with the help of C(i₂) - idempotent representation technique.

The norm in C₂ is defined as
\[\|\xi\| = \left(|\xi_1|^2 + |\xi_2|^2 \right)^{1/2} = \left[x_1^2 + x_2^2 + x_3^2 + x_4^2 \right]^{1/2} \]
\[C_{\xi,\eta} \text{ becomes a modified Banach algebra, in the sense that} \]
\[\|z\eta\| \leq \sqrt{2} \|z\| \|\eta\| \quad \text{... (1.1)} \]

1.4 Complex Dirichlet Series:4,

A Dirichlet series is a series of the form
\[f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s} \text{ where } \{\lambda_n\} \text{ is a strictly monotonically increasing and unbounded sequence of positive real numbers, and } s = \sigma + \text{i}\tau \text{ is a complex variable.} \]

When the sequence \{\lambda_n\} of exponent is to be emphasized, such a series is called a complex Dirichlet series of type \lambda_n.4

A Dirichlet series of the type n is a power series in e^{-s} is given by
\[f(s) = \sum_{n=1}^{\infty} a_n e^{-ns} = \sum_{n=1}^{\infty} a_n (e^{-s})^n \]

A Dirichlet series of type \log n is the Generalized Riemann Zeta function is given by
\[f(s) = \sum_{n=1}^{\infty} a_n n^{-s} \]

Abscissae of convergence and absolute convergence:
To every Dirichlet series, there exists a number \sigma_0 such that the Dirichlet series \[f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s} \] converges for \Re(s) > \sigma_0 and diverges for \Re(s) < \sigma_0. The number \sigma_0 is called the abscissa of convergence of the series, and the line \Re(s) = \sigma_0 is called the line of convergence.

To every Dirichlet series, there exists a number \sigma such that the Dirichlet series \[f(s) = \sum_{n=1}^{\infty} a_n e^{-ns} \] is absolutely convergent for \Re(s) > \sigma, and not absolutely convergent for \Re(s) < \sigma (this region comprise the region \Re(s) < \sigma_0 of divergence, the region \sigma_0 < \Re(s) < \sigma of conditional convergence and the line \Re(s) = \sigma_0).

The quantity \sigma is called the abscissa of absolute convergence of the series \[f(s) = \sum_{n=1}^{\infty} a_n e^{-ns} \] and the line \Re(s) = \sigma is called the line of absolute convergence.

1.5 Entireness of Complex Dirichlet Series:

Theorem 1.1:

For the complex Dirichlet Series \[\sum_{n=1}^{\infty} a_n e^{-\lambda_n s} \]
\[\text{If } \lim_{n \to \infty} \frac{n}{\lambda_n} < \infty \text{, then } \sigma_0 = \sigma = \lim_{n \to \infty} \frac{\log |a_n|}{\lambda_n} \]

Corollary 1.1: For a Dirichlet Series \[f(s) = \sum_{n=1}^{\infty} a_n e^{-ns} \]
\[\sigma_0 = \sigma = \lim_{n \to \infty} \frac{\log |a_n|}{n} \]

Proof:
\[\lambda_n = n \Rightarrow \lim_{n \to \infty} \frac{n}{\lambda_n} = \lim_{n \to \infty} \frac{n}{n} = 1 < \infty \]
Hence, \[\sigma_0 = \sigma = \lim_{n \to \infty} \frac{\log |a_n|}{n} \]

Corollary 1.2: The Complex Dirichlet Series \[f(s) = \sum_{n=1}^{\infty} a_n e^{-ns} \] represents an Entire function iff \[|a_n|^{1/n} \to 0 \text{ as } n \to \infty \].

Proof:
\[\lim_{n \to \infty} \frac{\log |a_n|}{n} = -\infty \Leftrightarrow \lim_{n \to \infty} \frac{\log |a_n|}{n} = -\infty \]
\[\Leftrightarrow \lim \log |a_n|^{1/n} = -\infty \Leftrightarrow \lim |a_n|^{1/n} = 0 \]
\[\Leftrightarrow |a_n|^{1/n} \to 0 \text{ as } n \to \infty \]
Hence \(f(s) = \sum_{n=1}^{\infty} a_n e^{-n^s} \) represents an Entire function if
\[|a_n|^{1/n} \to 0 \text{ as } n \to \infty. \]

2. BICOMPLEX DIRICHLET SERIES:

In this paper we discuss a Bicomplex Dirichlet Series of type n, which is a Bicomplex Power Series in \(e^{-\xi} \)
\[f(\xi) = \sum_{n=1}^{\infty} a_n e^{-n^2 \xi} = \sum_{n=1}^{\infty} a_n (e^{-\xi})^n \]
where \(\{a_n\} \) is a sequence of bicomplex numbers and \(\xi \) is a bicomplex variable.

Note that,
\[\sum_{n=1}^{\infty} a_n e^{-n^2 \xi} = \left[\sum_{n=1}^{\infty} a_n e^{-n^2 \xi} \right] e_1 + \left[\sum_{n=1}^{\infty} a_n e^{-n^2 \xi} \right] e_2 \]
\[\Rightarrow f(\xi) = f(1, \xi) e_1 + 2f(2, \xi) e_2 \]
Where, \(f(\xi) = \sum_{n=1}^{\infty} a_n e^{-n^2 \xi} \) is a Bicomplex Dirichlet Series and
\[2f(2, \xi) = \sum_{n=1}^{\infty} 2a_n e^{-n^2 \xi} \]
are Complex Dirichlet Series.

Throughout, we denote the abscissae of convergence of the Complex Dirichlet series \(\sum_{n=1}^{\infty} a_n e^{-n^2 \xi} \) and \(\sum_{n=1}^{\infty} 2a_n e^{-n^2 \xi} \)
by \(\sigma_1 \) and \(\sigma_2 \) and abscissae of their absolute convergence by \(\overline{\sigma}_1 \) and \(\overline{\sigma}_2 \), respectively.

Theorem 2.1:

For the Bicomplex dirichlet series \(f(\xi) = \sum_{n=1}^{\infty} a_n e^{-n^2 \xi} \)
\[\sigma_1 = \overline{\sigma}_1 = \sigma_2 = \overline{\sigma}_2 = \lim_{n \to \infty} \log \| a_n \|_n \]
if \(a_{1n} a_{4n} = a_{2n} a_{3n} \)

Proof:

\[a_n = a_{1n} + i_1 a_{2n} + i_2 a_{3n} + i_1 i_2 a_{4n} \]
\[a_n = (a_{1n} + a_{4n}) + i_1 (a_{2n} - a_{3n}) \]
Where, \(1 \) \(a_n = (a_{1n} + a_{4n}) + i_1 (a_{2n} - a_{3n}) \)
and \(2 \) \(a_n = (a_{1n} - a_{4n}) + i_1 (a_{2n} + a_{3n}) \)

\[1 |a_n|^2 = 2 |a_n|^2 = (a_{1n})^2 + (a_{2n})^2 + (a_{3n})^2 + (a_{4n})^2 \]
\[\cdot a_{1n} a_{4n} = a_{2n} a_{3n} \]
Also,
\[\|a_n\| = \sqrt{(a_{1n})^2 + (a_{2n})^2 + (a_{3n})^2 + (a_{4n})^2} \]
Hence, \(\|a_n\| = 1 |a_n| = 2 |a_n| \) if \(a_{1n} a_{4n} = a_{2n} a_{3n} \)

As, \(\sigma_1 = \overline{\sigma}_1 = \lim_{n \to \infty} \log \| a_n \|_n \)
and
\[\sigma_2 = \overline{\sigma}_2 = \lim_{n \to \infty} \log \| a_n \|_n \]

Theorem 2.2:

The Bicomplex Dirichlet series \(\sum_{n=1}^{\infty} a_n e^{-n^2 \xi} \) and the \(k^\text{th} \)
derivative defined by \(\sum_{n=1}^{\infty} (-n)^k a_n e^{-n^2 \xi} \) have the same region of convergence.

Proof:

\[\sigma_1 = \overline{\sigma}_1 = \lim_{n \to \infty} \log \| a_n \|_n \]
and
\[\sigma_2 = \overline{\sigma}_2 = \lim_{n \to \infty} \log \| a_n \|_n \]

Let \(\rho_1, \rho_2 \) and \(\overline{\rho}_1, \overline{\rho}_2 \) are the associated abscissae of convergence and absolute convergence of the Bicomplex Dirichlet series \(\sum_{n=1}^{\infty} (-n)^k a_n e^{-n^2 \xi} \). The,
\[\rho_1 = \overline{\rho}_1 = \lim_{n \to \infty} \log \| (-n)^k a_n \|_n \]
\[= \lim_{n \to \infty} \log \| (-n)^k a_n \|_n \]
\[= \lim_{n \to \infty} \log \| n^k a_n \|_n \]
\[= \lim_{n \to \infty} \log \| n^k a_n \|_n \]

Integrated Research Advances

\[
= k \lim_{n \to \infty} \frac{\log n}{n} + \lim_{n \to \infty} \frac{\log^1 \alpha_n}{n} = 0 + \lim_{n \to \infty} \frac{\log^1 \alpha_n}{n}
\]

\[
= \lim_{n \to \infty} \frac{\log^1 \alpha_n}{n} = \sigma_1
\]

Similarly,
\[
\rho_2 = \lim_{n \to \infty} \frac{\log^2 \alpha_n}{n} = \lim_{n \to \infty} \frac{\log^2 \alpha_n}{n} = \sigma_2.
\]

Theorem 2.3:

The Bicomplex Dirichlet series \(\sum_{n=1}^{\infty} \alpha_n e^{-n \xi} \) and the Bicomplex Dirichlet series \(\sum_{n=1}^{\infty} -\alpha_n e^{-n \xi} \) obtained after k-times term-by-term integration of \(\sum_{n=1}^{\infty} \alpha_n e^{-n \xi} \) have the same region of convergence.

Proof:

\[
\sigma_1 = \sigma_1 = \lim_{n \to \infty} \frac{\log^1 \alpha_n}{n} \quad \text{and} \quad \sigma_2 = \sigma_2 = \lim_{n \to \infty} \frac{\log^2 \alpha_n}{n}
\]

Let \(\rho_1, \rho_2, \bar{\rho}_1, \bar{\rho}_2 \) are the associated abscissae of convergence and absolute convergence of the Bicomplex Dirichlet series \(\sum_{n=1}^{\infty} \alpha_n e^{-n \xi} \).

Then, \(\rho_1 = \bar{\rho}_1 = \lim_{n \to \infty} \frac{\log^1 \alpha_n}{(-n)^k} \quad \text{and} \quad \rho_2 = \bar{\rho}_2 = \lim_{n \to \infty} \frac{\log^2 \alpha_n}{(-n)^k} \)

\[
= \lim_{n \to \infty} \frac{\log^1 \alpha_n}{n} - k \lim_{n \to \infty} \frac{\log n}{n}
\]

\[
= \lim_{n \to \infty} \frac{\log^1 \alpha_n}{n} - k \lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{\log^1 \alpha_n}{n} - 0
\]

\[
= \lim_{n \to \infty} \frac{\log^1 \alpha_n}{n}
\]

\[
= \sigma_1
\]

Similarly,
\[
\rho_2 = \lim_{n \to \infty} \frac{\log^2 \alpha_n}{n} = \lim_{n \to \infty} \frac{\log^2 \alpha_n}{n} = \sigma_2.
\]

Entire Bicomplex Dirichlet Series

Definition 2.1:

The Bicomplex Dirichlet series \(f(\xi) = \sum_{n=1}^{\infty} \alpha_n e^{-n \xi} \) is said to be an entire Bicomplex Dirichlet Series if it is convergent in the entire \(\mathbb{C}_2 \)-space.

Theorem 2.4:

\[
\|\alpha_n\|^{1/n} \to 0 \quad \text{as} \quad n \to \infty \quad \text{if and only if} \quad \|\alpha_n\|^{1/n} \to 0 \quad \text{as} \quad n \to \infty,
\]

where \(\alpha_n = \alpha_n e_1 + \beta_n e_2 \).

Proof:

Let \(\|\alpha_n\|^{1/n} \to 0 \quad \text{as} \quad n \to \infty \)

Given \(\varepsilon > 0 \), \(\exists \ m \in \mathbb{N} \), such that \(\|\alpha_n\|^{1/n} < \varepsilon \) \(\forall \ n \geq m \)

Now \(\forall \ n \geq m, \quad \|\alpha_n\| < \varepsilon \to \Rightarrow \quad \|\alpha_n\|^{1/n} \to 0 \quad \text{as} \quad n \to \infty \)

Conversely let \(\|\alpha_n\|^{1/n} \to 0 \quad \text{as} \quad n \to \infty \) and \(\varepsilon > 0 \), \(\exists \ m_1, m_2 \in \mathbb{N} \)

Such that \(\|\alpha_n\|^{1/n} < \varepsilon \) \(\forall \ n \geq m_1 \) and \(\|\alpha_n\|^{1/n} < \varepsilon \) \(\forall \ n \geq m_2 \)
Let \(m = \max (m_1, m_2) \)

Then \(\forall \ n \geq m \)

\[
\left| \alpha_n \right|^2 < \varepsilon \quad \text{and} \quad \left| \beta_n \right|^2 < \varepsilon
\]

\[
\Rightarrow \frac{1}{2} \left(\left| \alpha_n \right|^2 + \left| \beta_n \right|^2 \right) \leq \varepsilon
\]

\[
\Rightarrow 2 \left| \alpha_n \right|^2 < \varepsilon^2 + \varepsilon^2 = 2 \varepsilon^2
\]

\[
\Rightarrow \left\| \alpha_n \right\|^2 \to 0 \text{ as } n \to \infty
\]

Theorem 2.5:

The Bicomplex Dirichlet series \(f(\xi) = \sum \alpha_n e^{-n\xi} \) is an entire Bicomplex Dirichlet series if and only if both

\[
1 \left(f(\xi) \right) = \sum_1 \alpha_n e^{-n\xi} \quad \text{and} \quad 2 \left(f(\xi) \right) = \sum_2 \alpha_n e^{-n\xi}
\]

are entire Complex Dirichlet series.

Corollary 2.1: The Bicomplex Dirichlet series \(f(\xi) = \sum_1 \alpha_n e^{-n\xi} \) is an entire Bicomplex Dirichlet series if and only if \(\sigma_1 = -\infty \) and \(\sigma_2 = -\infty \).

Corollary 2.2: The Bicomplex Dirichlet series \(f(\xi) = \sum_1 \alpha_n e^{-n\xi} \) is an entire Bicomplex Dirichlet series if and only if \(\left\| \alpha_n \right\|^2 \to 0 \) and \(\left\| \beta_n \right\|^2 \to 0 \).

Corollary 2.3: The Bicomplex Dirichlet series \(f(\xi) = \sum_1 \alpha_n e^{-n\xi} \) is an entire Bicomplex Dirichlet series if \(\left\| \alpha_n \right\|^2 \to 0 \).

Theorem 2.6:

Let \(h(\xi) = \sum \alpha_n \beta_n e^{-n\xi} \) be the Hadamard product of \(f(\xi) = \sum \alpha_n e^{-n\xi} \) and \(g(\xi) = \sum \beta_n e^{-n\xi} \). If \(f \) and \(g \) are entire Bicomplex Dirichlet series, then \(h \) is also an entire Bicomplex Dirichlet series.

Proof:

\[
f(\xi) = \sum_{n=1}^{\infty} \alpha_n e^{-n\xi} \quad \text{and} \quad g(\xi) = \sum_{n=1}^{\infty} \beta_n e^{-n\xi}
\]

are two Entire Bicomplex Dirichlet series

\[
\Rightarrow \left\| \alpha_n \right\|^{\frac{1}{n}} \to 0 \quad \text{as} \quad n \to \infty \quad \text{and} \quad \left\| \beta_n \right\|^{\frac{1}{n}} \to 0 \quad \text{as} \quad n \to \infty
\]

i.e. given \(\varepsilon > 0 \) \(\exists m_1, m_2 \in \mathbb{N} \)

such that \(\left\| \alpha_n \right\|^{\frac{1}{n}} < \varepsilon \) \(\forall n \geq m_1 \) and \(\left\| \beta_n \right\|^{\frac{1}{n}} < \varepsilon \) \(\forall n \geq m_2 \)

Let \(m = \max (m_1, m_2) \)

Now \(\forall n \geq m, \left\| \alpha_n \right\|^{\frac{1}{n}} < \varepsilon \) and \(\left\| \beta_n \right\|^{\frac{1}{n}} < \varepsilon \)

Now,

\[
\Rightarrow \left\| \alpha_n \beta_n \right\|^{\frac{1}{n}} \leq \sqrt{2} \left(\left\| \alpha_n \right\|^{\frac{1}{n}} \right) \left(\left\| \beta_n \right\|^{\frac{1}{n}} \right) < (2)^{\frac{1}{2n}} \varepsilon^2
\]

\[
\Rightarrow \left\| \alpha_n \beta_n \right\|^{\frac{1}{n}} \to 0 \quad \text{as} \quad n \to \infty
\]

Hence \(h(\xi) = \sum_{n=1}^{\infty} \left(\alpha_n \beta_n \right) e^{-n\xi} \) is an entire Bicomplex Dirichlet Series.

Theorem 2.7:

If \(f(\xi) = \sum_{n=1}^{\infty} \alpha_n e^{-n\xi} \) and \(g(\xi) = \sum_{n=1}^{\infty} \beta_n e^{-n\xi} \) be two entire Bicomplex Dirichlet series, then the series \(\sum_{n=1}^{\infty} \left(\alpha_n \pm \beta_n \right) e^{-n\xi} \) is also an entire Bicomplex Dirichlet series.

Theorem 2.8:

If \(\sum_{n=1}^{\infty} \alpha_n e^{-n\xi} \) is an entire Bicomplex Dirichlet Series, then \(k^{th} \) derivative defined by \(\sum_{n=1}^{\infty} (-n)^k \alpha_n e^{-n\xi} \) is also an entire Bicomplex Dirichlet Series.
Proof:

\[f(\xi) = \sum_{n=1}^{\infty} a_n \ e^{-n \xi} \] is an Entire Bicomplex Dirichlet Series

i.e. \[\|a_n\|_{n} \to 0 \] as \(n \to \infty \)

Now,

\[\|(-n)^k a_n\|_{n} = (n)^{-n} \|a_n\|_{n} \Rightarrow \] \[(-n)^k a_n \] \[\|n\] \[\to 0 \] as \(n \to \infty \) \[\therefore (n)^{-n} \to 0 \] as \(n \to \infty \)

Theorem 2.9:

If the Bicomplex Dirichlet series \(\sum_{n=1}^{\infty} a_n \ e^{-n \xi} \) is an entire Bicomplex Dirichlet series then the Bicomplex Dirichlet series

\[\sum_{n=1}^{\infty} \frac{a_n}{(-n)^k} \ e^{-n \xi} \] obtained after \(k \)-times term-by-term integration of \(\sum_{n=1}^{\infty} a_n \ e^{-n \xi} \) is also an entire Bicomplex Dirichlet series.

Proof:

Let \(f(\xi) = \sum_{n=1}^{\infty} a_n \ e^{-n \xi} \) is an entire Bicomplex Dirichlet series i.e. \[\|a_n\|_{n} \to 0 \] as \(n \to \infty \)

Now,

\[\|a_n\|_{n^{k}} \to 0 \] as \(n \to \infty \) \[\therefore \sum_{n=1}^{\infty} \frac{a_n}{(-n)^k} \ e^{-n \xi} \] is an entire Bicomplex Dirichlet series.

Acknowledgments

I am heartily thankful to Mr. Sukhdev Singh, Assistant Professor-Mathematics, Lovely Professional University, Punjab and Dr. Mamta Nigam, Assistant Professor-Mathematics, University of Delhi for their encouragement and support during the preparation of this paper.

References and Notes