Total synthesis of (S)-Zearalenone and Zeranol and development of Amberlyst-15®
promoted reactions

Vishnu Murthy,* Narayana Reddy

Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad, India

Submitted on: 2-4-2014

ABSTRACT
This work review is structured in three different parts. The first part includes total synthesis of 14-membered macrolides (S)-zearalenone and zeralenone through the application of Diels-Alder reaction, Jacobsen kinetic resolution, Mitsunobu coupling, Ring-closing metathesis, and hydrogenation as key steps. The second part discusses a convenient and metal-free protocol for the preparation of α,β-unsaturated ketones from alkynes and aldehydes using Amberlyst-15®. The third part describes the preparation of β-butynyloxy enones through the 2:1 coupling of homopropargyl alcohol and aldehydes using Amberlyst-15® as a heterogeneous solid acid.

Keywords: Macrolide, (S)-Zearalenone, Zeranol, Ion-exchange resin, Conjugated ketones, β-Alkoxy conjugated enones

Section A: Total Synthesis of (S)-Zearalenone and Zeranol

The β-resorcylic macrolides are a class of naturally occurring 12- and 14-membered macrolides.1-6 (S)-Zearalenone is a 14-membered macrolactone of this type that exhibits anabolic, estrogenic, uterotrophic, and antibacterial activity.7-9 Zearalenone was first isolated from the mycelium of the fungus Gibberella zeae (Fusarium graminearum) growing as a mould on corn.10 Zeranol also belongs to this class of macrolide and is closely related to (S)-zearalenone (Figure 1). Zeranol is a non-steroidal estrogen agonist and animal growth-promoting agent and is under clinical trials as a potential treatment for menopausal and post-menopausal syndrome.11

Figure 1. Chemical Structure of (S)–Zearalenone and Zeranol

Retrosynthetic Analysis

In our retrosynthetic analysis (Scheme 1), we envisaged that the target molecules 1 and 2 could be synthesized from a common intermediate 3, which, in turn, could be obtained from Mitsunobu and RCM reaction of aromatic acid 4 and alcohol 5. Aromatic acid 4 was to be obtained from Diels-Alder reaction of diene 6 and dienophile 7. Fragments 5 and 7 could be derived from commercially available 5-hexene-1-ol and homopropargyl alcohol, respectively.

Scheme 1. Retrosynthetic Analysis
A convergent total synthesis of 14-membered macrolides (S)-zearalenone and zeranol has been achieved through application of the Diels–Alder reaction, Jacobsen kinetic resolution, Mitsunobu coupling, Ring-closing metathesis, and hydrogenation as key steps.

We have described a simple, convenient and metal-free protocol for the preparation of α,β-unsaturated ketones from alkynes and aldehydes using Amberlyst-15 as a novel promoter.

We have developed a novel and efficient approach for the preparation of β-butylnol enones through the 2:1 coupling of homopropargyl alcohol and aldehydes using Amberlyst-15 as a heterogeneous solid acid.

Highlights

- A convergent total synthesis of 14-membered macrolides (S)-zearalenone and zeranol has been achieved through application of the Diels–Alder reaction, Jacobsen kinetic resolution, Mitsunobu coupling, Ring-closing metathesis, and hydrogenation as key steps.
- We have described a simple, convenient and metal-free protocol for the preparation of α,β-unsaturated ketones from alkynes and aldehydes using Amberlyst-15 as a novel promoter.
- We have developed a novel and efficient approach for the preparation of β-butylnol enones through the 2:1 coupling of homopropargyl alcohol and aldehydes using Amberlyst-15 as a heterogeneous solid acid.

Results and Discussions:

Dienophile 7 was prepared from homopropargyl alcohol 9, which was protected as the tert-butylimidemethylsilyl (TBS) ether 12 with tert-butylimidemethylsilyl chloride in the presence of imidazole and a catalytic amount of 4-(N,N-dimethylamino) pyridine (DMAP) in dichloromethane. Treatment with tert-butylithium and reaction with methyl chloroformate (CICO₂Me) afforded 7 in 80% yield. The Diels–Alder reaction between diene 6 and acetylenic dienophile 7 in a sealed tube at 180 °C for 48 hours in the presence of a catalytic amount of N,N-dimethylaniline gave the aromatic product 12 (40% yield). Silyl ether deprotection with HF-Py in acetonitrile afforded 13, further iodination with triphenylphosphine and iodine in a mixture of acetonitrile and diethyl ether (1:2), yielded iodo compound 14 in 85% yield. Compound 15, upon treatment with potassium tert-butoxide, afforded olefin, and hydrolysis of the ester (LiOH·H₂O in MeOH–H₂O) furnished acid 4 in 80% yield over two steps (Scheme 2).

The synthesis of compound 5 was started from the 5-hexene-1-ol 10, which was protected with 2,3-dihydro-2H-pyran, and then oxidized to corresponding epoxide 15. The solvent free hydrolytic kinetic resolution of 15 with 0.3 mol% (S,S)-salen-Co(III)(OAc) complex furnished chiral epoxide 16 in 93% ee (determined by chiral HPLC). Reductive opening of epoxide 16 using LAH afforded alcohol in excellent yield.

Scheme 3: Reagents and Conditions: (i) a) DHP, PPTS, CH₂Cl₂, r.t, 95%; b) m-CPBA, CH₂Cl₂, r.t, 90%; (ii) a) (S,S) Jacobsen cat, CH₂COOH, H₂O, Toluene, 40%; (iii) a) LiAlH₄, THF, 0 °C to r.t, 90%; b) TBDPSCl, Imidazole, CH₂Cl₂, 90%; (iv) a) PPTS, C₃H₇OH, 94%; b) IBX, DMSO, CH₂Cl₂, 89%; (v) a) 5-pentenyl bromide, Mg, THF, 0 °C to r.t, 80%; (vi) DHP, PPTS, CH₂Cl₂, 90%; (vii) TBAF, THF, 90%.

The resulting hydroxy group was oxidized with IBX to get the aldehyde 8, which was further subjected to Grignard reaction with 5-pentenyl bromide, Mg in THF to get secondary alcohol 18 in 80% yield. The subsequent protection to its THP ether 19 and deprotection of TBDPS group gave the required alcohol 5 fragment in 90% yield (Scheme 3). The next step was to couple both, the acid 4 and secondary alcohol 5 by employing Mitsunobu esterification reaction (Scheme 4).

Scheme 4: Reagents and Conditions: (i) DEAD, TPP, Et₂O, r.t, 90%; (ii) a) PPTS, C₃H₇OH, 85%; b) (PCy)₃Cl₂Ru=CHPh, Toluene, reflux, 80%; (iii) a) IBX, DMSO, CH₂Cl₂, r.t, 85%; b) AlI₃, TBAI, C₆H₆, 70%.

Accordingly, the acid 4 and alcohol 5 were treated with diethyl azodicarboxylate (DEAD) in Et₂O to afford the ester 20 in 90% yield with the appropriate stereogenic center. It was subjected to THP deprotection and olefin metathesis reaction using second generation Grubbs’s catalyst, (PCy)₃Cl₂Ru=CHPh for the formation of desired product trans macrolactone 3 in 80% yield. Macrolactone 3 was oxidized with IBX into ketone in 85% yield, which on subsequent demethylation with AlI₃, (insitu generated from Al powder and I₂, by refluxing in benzene for 1 h) and catalytic amount of TBAI, in benzene at 10°C for 1 h provided desired (S)-Zearalenone 1 in 70% yield. The 1H NMR, 13C NMR data and optical rotation of the
synthetic (S)-Zearalenone 1 were in agreement with that reported in the literature (Scheme 4). Reduction of the olefinic bond of compound 3 with Pd-C in C₂H₂OH at room temperature for 2 h under hydrogen gave 21 in 80% yield, which on subsequent demethylation with AlI₃ (in situ generated from Al powder and I₂) by refluxing in benzene for 1 h and catalytic amount of TBAI, in benzene at 10 °C for 1 h provided Zeranol 2 in 70% yield and this analytical data were in good agreement with the reported data (Scheme 5).\(^{15}\)

Scheme 5: Reagents and Conditions: (i) Pd-C, H₂, C₂H₂OH, r.t., 80%; (ii) AlI₃, TBAI, C₆H₆, 70%.

In conclusion, we have synthesized (S)-Zearalenone through the Mitsunobu esterification and ring-closing metathesis of acid 4 and alcohol 5. The stereochemistry in aliphatic fragment was established by Jacobsen resolution method. The aromatic acid 4 was prepared through Diels-Alder approach based strategy. This approach should be widely applicable to complex natural product synthesis.

Section B: One-pot synthesis of α,β-unsaturated ketones

α,β-Unsaturated ketones have attracted increasing attention due to their numerous pharmacological properties such as anticancer activity, cytotoxicity, anti-inflammatory, analgesic, and antipyretic behavior.\(^ {16}\) Ion-exchange resins can make reaction processes simple, more convenient, economic, and environmentally benign which enable them to function as efficient catalysts for various transformations.\(^ {17-20}\) In continuation of our interest in the use of solid acid catalysts, herein, we report an efficient and metal-free method for the preparation of α,β-unsaturated ketones by means of coupling alkenes with aldehydes using a cheap and readily available cation exchange resin.

![Scheme 6](image)

Initially, we attempted the coupling of phenylacetylene 22a with paraformaldehyde 23a in the presence of Amberlyst-15\(^ {15}\). The reaction was complete within 2.0 h and the product, 1-phenylprop-2-en-1-one 24a was obtained in 86% yield (Scheme 6). Other terminal alkenes such as p-methylphenylacetylene and 4-phenylbut-1-yne were also coupled effectively with paraformaldehyde under similar conditions (Table 1, entries b and c). These results provided the incentive for further study with various alkenes and aldehydes. Interestingly, several aldehydes such as cyclohexanecarboxaldehyde, n-hexanal, n-butyraldehyde, benzaldehyde, p-methoxy-benzaldehyde and thiophene-2-carboxaldehyde reacted well with alkenes under similar conditions to afford a wide range of conjugated enones (Table 1, entries d–i). This method worked equally well with aliphatic, heterocyclic and aromatic aldehydes.

Table 1: Amberlyst-15\(^ {15}\) promoted coupling of alkenes with aldehydes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkyne</th>
<th>Alkyne</th>
<th>Product</th>
<th>Time (h)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>HCHO</td>
<td>O</td>
<td>24a</td>
<td>2.0</td>
<td>85</td>
</tr>
<tr>
<td>b</td>
<td>HCHO</td>
<td>H,C</td>
<td>24a</td>
<td>2.0</td>
<td>90</td>
</tr>
<tr>
<td>c</td>
<td>HCHO</td>
<td>H,C</td>
<td>24a</td>
<td>3.0</td>
<td>81</td>
</tr>
<tr>
<td>d</td>
<td>CH₂OH</td>
<td>O</td>
<td>24a</td>
<td>2.5</td>
<td>85</td>
</tr>
<tr>
<td>e</td>
<td>CH₂OH</td>
<td>H,C</td>
<td>24a</td>
<td>2.0</td>
<td>90</td>
</tr>
<tr>
<td>f</td>
<td>CH₂OH</td>
<td>CH₂OH</td>
<td>24a</td>
<td>3.0</td>
<td>80</td>
</tr>
<tr>
<td>g</td>
<td>CH₂OH</td>
<td>CH₂OH</td>
<td>24a</td>
<td>4.0</td>
<td>70</td>
</tr>
<tr>
<td>h</td>
<td>CH₂OH</td>
<td>CH₂OH</td>
<td>24a</td>
<td>3.5</td>
<td>78</td>
</tr>
<tr>
<td>i</td>
<td>H,C</td>
<td>H₂C</td>
<td>24a</td>
<td>2.5</td>
<td>87</td>
</tr>
</tbody>
</table>

In summary, we have described a simple, convenient and metal-free protocol for the preparation of α,β-unsaturated ketones from alkenes and aldehydes using Amberlyst-15\(^ {15}\) as a novel promoter. In addition to its simplicity and mild reaction conditions, this method provides high yields of products in short reaction times with high selectivity. The use of an inexpensive and recyclable acid resin makes this method simple, convenient, and economically viable.

Section C: Synthesis of β-butynyloxy enones

The coupling of alkenes to aldehydes is an important transformation in organic synthesis. Although the addition of alkynylmetal reagents to aldehydes to produce propargyl alcohols has been extensively studied, \(^ {21-22}\) the reaction between alkenes and aldehydes to generate, α,β-unsaturated ketones has received less attention.\(^ {23}\) Herein, we report a novel and efficient protocol for the synthesis of β-butynyloxy enones from the 2:1 coupling of a homopropargyl alcohol and aldehydes using Amberlyst-15\(^ {15}\) as an inexpensive and recyclable heterogeneous solid acid catalyst. Initially, we attempted the coupling of benzaldehyde 25a with 3-butyn-1-ol 26 in the presence of an acid resin. The reaction went to

http://pubs.iscience.in/iast

completion within 2.5 h and the product, 5-(3-butylnoxy)-1-phenyl-E-1-penten-3-one 27a was obtained in 86% yield (Scheme 7).

![Scheme 7](http://pubs.iscience.in/iast)

Encouraged by the results obtained with benzaldehyde and 3-butyln-1-ol, we turned our attention to substituted aldehydes. Interestingly, a large number of substituted benzaldehydes such as the p-methyl-, 3,4-dichloro-, p-fluro-,p-chloro-, o-ethoxy-, m-nitro-, 3,4-dimethoxy-, and m-phenoxy-derivatives reacted efficiently with 3-butyln-1-ol under similar conditions to afford a wide range of conjugated enones (entries b–j, Table 2). This method is equally effective for both electron-rich as well as electron-deficient aromatic aldehydes. Sterically hindered 2-naphthaldehyde also gave the corresponding enone in 85% yield. In all cases, the reactions proceeded efficiently in high yields at ambient temperature under mild conditions.

Table 2: Synthesis of α,β-unsaturated ketones from aldehydes and homopropargyl alcohols

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehyde</th>
<th>Product</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>CHO</td>
<td>26</td>
<td>3.0</td>
<td>85</td>
</tr>
<tr>
<td>b</td>
<td>MeCHO</td>
<td>26</td>
<td>2.5</td>
<td>82</td>
</tr>
<tr>
<td>c</td>
<td>MeOCHO</td>
<td>26</td>
<td>4.5</td>
<td>75</td>
</tr>
<tr>
<td>d</td>
<td>O2NCHO</td>
<td>26</td>
<td>3.5</td>
<td>82</td>
</tr>
<tr>
<td>e</td>
<td>ClCHO</td>
<td>26</td>
<td>3.5</td>
<td>87</td>
</tr>
<tr>
<td>f</td>
<td>ClOEI</td>
<td>26</td>
<td>5.0</td>
<td>79</td>
</tr>
<tr>
<td>g</td>
<td>O2NCHO</td>
<td>26</td>
<td>3.0</td>
<td>85</td>
</tr>
<tr>
<td>h</td>
<td>FCHO</td>
<td>26</td>
<td>4.0</td>
<td>81</td>
</tr>
<tr>
<td>i</td>
<td>PhOCHO</td>
<td>26</td>
<td>4.0</td>
<td>80</td>
</tr>
<tr>
<td>j</td>
<td>ClClCHO</td>
<td>26</td>
<td>3.5</td>
<td>90</td>
</tr>
</tbody>
</table>

In summary, we have developed a novel and efficient approach for the preparation of β-butylnoxy enones through the 2:1 coupling of homopropargyl alcohol and aldehydes using Amberlyst-15® as a heterogeneous solid acid. The use of an inexpensive and recyclable acid resin makes this method simple, convenient and economically viable.

Acknowledgments

The author expresses deepest gratitude and respect towards his research supervisor Dr. J. S. Yadav, FNA for his expert and inspiring guidance, support and encouragement during the work presented. Financial support in the form of junior and senior research fellowship by CSIR-India, Hyderabad is highly acknowledged.

References and notes

18. A. Solladie-Cavallo, E. Choucair, M. Balaz, P. Lupattelli, C. Bonini, N. di Blasio. A Mild Stereo- and Enantioselective Conversion of 2,3-Diaryl-

Thesis Details

The thesis is the result of my Ph.D project carried out under the guidance of Dr. J. S. Yadav, F.N.A in Department of Organic chemistry at the Indian Institute of Chemical Technology (IICT), Hyderabad, India.